Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dielectric Properties of Insulation

Similar presentations


Presentation on theme: "Dielectric Properties of Insulation"— Presentation transcript:

1 Dielectric Properties of Insulation
Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions © Prof.Dr.R.Haller

2 Dielectric Properties of Insulation
Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions © Prof.Dr.R.Haller

3 Insulation Materials (Dielectrics)
gaseous [air, SF6, N2, …] liquid [Oil (mineral, silicon, ..), H2O, Glycerin, ..] solid [Cellulose (Paper), Thermoplastics (PVC, PE, …), Duroplastics (EP, Siliconrubber, ..), anorganic materials (Porcelain, Ceramics, ..)] which are the most important electrical properties for manufacturing, design, construction, operation, diagnosis ( Recycling ) ? © Prof.Dr.R.Haller

4 Dielectric Properties
electrical strength [kV/mm] dielectric parameters permittivity ε conductivity κ [S/m] dissipation (loss) factor tanδ (other) electrical, thermal, mechanical, chemical parameters © Prof.Dr.R.Haller

5 Dielectric Properties of Insulation
Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions © Prof.Dr.R.Haller

6 Polarization D = ε0·E + P bzw. P = ε0·E·(εr – 1) = ε0·E· χ
Polarization requests  time (relaxation time ) and  losses (dissipation factor tan δ) Polarization depends on  material (kind of polarization)  frequency f ) of applied  amplitude Emax ) el. field  temperature T © Prof.Dr.R.Haller

7 Relative Permittivity εr
gaseous air, SF6, N2, … ~ 1 liquid Mineraloil 2,2 Siliconoil 2,7 Rhizinusoil 5 Water 81 solid PVC 4 PE 2,4 Polyamid 7 Epoxyresin 3,8 .. 5,8 Hard- paper paper 2,8 Porcelain 6 BaTiO3 © Prof.Dr.R.Haller

8 Electrical Conductivity 
physically: free movable charged particles (electrons, ions) J =  · E  = (n+q+b+ + n-q-b- + neqebe) technically: depends on  material (ions, electrons)  pollutions (H2O, ..)  operating parameters (E, t, T) © Prof.Dr.R.Haller

9 Electrical Conductivity 
typical values: gaseous ( … ) (T = 20 °C) liquids/ solids ( … ) Water ( … ) Semiconductors ( … ) Conductors ( … ) © Prof.Dr.R.Haller

10 Dissipation Factor tan δ
characterizing of losses (polarization, conductivity) Pδ = tan δ · Qc = tan δ · (ωC·U2) depends on ( t (f), E, T) typical values: mineral oil (10-3 …. 10-1) (T = 20 °C) oilimpregnated paper ( …. 100) ( f = 50 Hz) PVC, PA, paper ( …. 10-1) PE, PTFE (10-4 … ) EP, porcelain (10-1 …. 10-2) © Prof.Dr.R.Haller

11 tan δ and εr vs. frequency
biological tissue dispersion area © Prof.Dr.R.Haller

12 tan δ and εr vs. frequency
© Prof.Dr.R.Haller

13 Relaxationszeiten verschiedener Mechanismen
conductor 2 1 3 5-10 s Materialpolarisation 1 insulation 30-80 s Grenzschichten 2 s Tree-Strukturen 3 © Prof.Dr.R.Haller

14 outer electrode inner electrode water tree © Prof.Dr.R.Haller

15 water tree & electrical tree
© Prof.Dr.R.Haller

16 Dielectric properties can be determined by
Knowledge of dielectric properties is necessary for whole life cycle of electrical equipment Dielectric properties can be determined by  calculation (modelling, simulation)  measurement ( diagnostic/ testing) © Prof.Dr.R.Haller

17 Dielectric Properties of Insulation
Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions © Prof.Dr.R.Haller

18 Modelling of Dielectrics
a) simple circuit © Prof.Dr.R.Haller

19 Modelling of Dielectrics
© Prof.Dr.R.Haller

20 Maxwell- Wagner- Model
© Prof.Dr.R.Haller

21 Modelling of Dielectrics
b) complex circuit © Prof.Dr.R.Haller

22 Polarization Effects (i, u)
© Prof.Dr.R.Haller

23 Dielectric Properties of Insulation
Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions © Prof.Dr.R.Haller

24 Schering- Bridge © Prof.Dr.R.Haller

25 PC- based measuring bridge
© Prof.Dr.R.Haller

26 RVM- and IRC- principle
© Prof.Dr.R.Haller

27 RecoverVoltageMeasurement
D PC HV DC R U testobject © Prof.Dr.R.Haller

28 Feuchtigkeitseinfluß in papierisolierten Kabeln Anstieg des Maximums bei tm und Verschiebung zu kürzeren Messzeiten Kabel 1: alt gemessen mit 1 kV und 2 kV Kabel 2: gut gemessen mit 1 kV und 2 kV Return Voltage (V) Cable m Cable m time (min) © Prof.Dr.R.Haller

29 RVM measurement on 10 kV cabel with paper insulation
Bewertung des Gradienten im Spannungsanstieg bei 1 und 2 kV : Qa: 2,0-1,87 trocken Qa: 1,86-1,65 feucht Qa < 1,65 nass © Prof.Dr.R.Haller

30 RVM Diagnose an 1 kV Papierkabel -
Stromversorgung der Löschwasseranlage eines großen Chemie-Unternehmens Speisekabel mit hoher Wichtigkeit für Löschwasserpumpen 700m Zuleitung im Elbdüker NAKRAA 3x185 T-Muffe und 300 m bzw. 560 m NAKBA 3x185 bis zu den Pumpenhäusern © Prof.Dr.R.Haller

31 Meßprinzip der IRC-Messung
1: Formierung 1800s I 1kV CDS 2: Entladung 5s 3: Messung 1800s testobject PC A D © Prof.Dr.R.Haller

32 IRC- Diagnosis on Power Cables
new (normal) aged critical © Prof.Dr.R.Haller

33 Measurement of Polarization
© Prof.Dr.R.Haller

34 Dielectric Properties of Insulation
Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions © Prof.Dr.R.Haller

35 Conclusions dielectric properties will be characterized by:
relative permittivity εr electrical conductivity  dissipation factor tan δ knowledge of dielectric properties is important for manufacturing, design, operation (diagnosis) and recycling of electrical insulation © Prof.Dr.R.Haller

36 Conclusions dielectric properties can be determined by
- calculation / simulation - measurement/ testing © Prof.Dr.R.Haller

37 Thank you Questions ? & Answers ! © Prof.Dr.R.Haller


Download ppt "Dielectric Properties of Insulation"

Similar presentations


Ads by Google