Presentation is loading. Please wait.

Presentation is loading. Please wait.

Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. *NIRS & CTU, Praha For the MOON collaboration Sendai.

Similar presentations


Presentation on theme: "Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. *NIRS & CTU, Praha For the MOON collaboration Sendai."— Presentation transcript:

1 Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. *NIRS & CTU, Praha For the MOON collaboration Sendai TAUP Sep. 07

2 1.Doublr beta decay spectroscopy 2. Majorana mass sensitvity 3.Double beta decays to excited states 4.Nuclear matrix element H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291.

3  by RHC, Heavy, SUSY, and others A 2 =GM  A   g M >  Energy spectra 4,3,2 body LHC m / SUSY m M  + kM S different isotopes and states with different M  A   LHC + RHC +SUSY  ~k(M L /M R ) 2 LHC / RHC  21 and E 12 correlations

4 Spectroscopic detectors ELEGANT- MOON, DCBA NEMOIII - Super NEMO 1. E 12 -  12 identify m term 2. Detector ≠ source Select  nuclide by Q , Z, Enrichment, 2  3. Small RI-BG :E(RI) < Q   separation  Major BG : 2  tail in  window. E-resolution !

5 Interference A 0 = X L + X R X L = Light + SUSY (+Heavy ) = m M  + kM S = m M  [(1 + (k/ m ) (Ms/M  ) ] Cancellation at A=76 (left fig.) or 136(right), but not at other A’ because of the different short-range/long range matrix elements. Need measurements with different  nuclides.. Vergados 07

6 Nuclear matrix elements QRPA M  ~ 24 /r = 18/A 1/3 within a factor 1.3

7 Mass sensitivities and nuclear sensitivity = S N - 1 /2 (N eff ) -1/2  1/2 B=[B(RI) + B(2 )] B(2 )=4.2(   /t  1/2 )(100/A),   10 -7 and t  1/2 10 20 S N - 1 /2 = 13 ( GM 2 /0.01 A) - 1 /2 Nuclear sensitivity : m N=1 t y and Y  =  = 1 S N - 1 /2 =20~10 meV for M=25/R  eff =   N ton year  = No signals for 90 % CL ~2.3 if B~0 ~1.6 + 1.7 (BN) 1/2 BG =B/t y N ton year M ; excited state and Nd M = M/3

8 Mass sensitivities and nuclear sensitivity meV= (S N ) - 1 /2 (   N) -1/2  1/2 S N = G  M 2 /0.01A/170) M=25/R ~ 4 Small BG or N  ~ 2.3 = 2.3 S N - 1 /2 (   N )-1/2 Large BG or N  ~ 1.7 (BN) 1/2 = 1.3 S N - 1 /2 (   )-1/2 N -1/4 B 1/4 N -1/2 N -1/4

9 Spectroscopic DBD BG= 

10 130 Te B =6000 for CUORITINO B=200 for 0.01 /y kev kg of TeO 2

11 Excited 0 + states Isotope State 100 Mo GRS 100 Mo EXS 150 Nd GRS 150 Nd EXS Q  (MeV)3.0341.9033.3682.113 S N 1/2 meV9.619.5 42 meV /5 y t44397896  reduce BG’s 2 , RI. Cancellation, but not at both. GRS and EXS T  = G |M  m +M s  | 2 M     J>1+) Nd M/3 is assumed for deformation change.

12 Excited state for     = 2/3 of GR by , and M= same as GR

13 150 Nd E(2) 0.13 MeV Q MeV G  150 Sm GS 0+ E(2) 0.334 MeV 3.36 13.4 0.74 MeV E(2) 0.34 MeV 2.63 3 E0 1.255 MeV E(2) 0.16 MeV 2.11 1.3 E2 150 Nd -- 150 Sm deformation M  due to change of deformation is 1/3? M  to the excited, but same deformation is 1 RCNP/MSU 3 He,t t, 3 He Zergers R Simucovic 1/4 ~ 1/6 of M due to deformation change.

14 RCNP Osaka High  E  response at low and high 1+ 2- states D. Freckers, R. Zegers, MSU/RCNP/KVI Charge exchange reactions H. Ejiri, PR 380 ‘2000 2-2- 1+1+ Suhonen

15  z=5,5  z=6,6 T,Tz=6,6  z=5,5 ,Tz=5,4  z=4,4     S H. Ejiri PRL 21 ’68, H. Ejiri PR 38 ‘78 Polarized GeV-MeV photons from laser scattered off GeV electronsfor electric and magneic trasitions. Photon probes

16 MOON detector conceptional sketch Multi-layers, 2 for  and all others active shields Each with 1PL+2PS 1.3 m-1.3 m- 4 cm 25 kg One unit 100 mod.,  :30 kg, 1 m 2 –4m, Based on ELEGANT V H. Ejiri, et al., PRL, 85, 2000, 2917. H. Ejiri et al., Czech. J. Phsy. 54, 2004, 317.

17 Concluding remarks 1. DBD studies of E-  correlations for 2-3 isotopes and/or states are indispensable for identifying the  -mass processes. 2. They can be realistic by spectroscopic DBD studies with detector≠  souces. 82 Se, 100 Mo 150 Nd are good  candidates. 3. Recent QRPA/RQRPA give M  ~18/A 1/3. Nuclear sensitivity, the mass for N=1 t y Y  =1, is 20 meV for 76 Ge and 10 meV for 82 Se, 100 Mo, 130 Te, 136 Xe. 5. Then QD ~100 meV and IH~30 meV masses are studied by N~0.1 and 1 t y with 76 Ge and 82 Se, 100 Mo, 130 Te, 136 Xe. 6. Spectroscopic experiments (MOON, SuperNEMO) can access the IH masses with realistic  ~ 2.2 % and ~20 mBq/t. 7. Charge exchange nuclear reactions and photo nuclear reactions are used to check the M  calculations. H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291.

18 MOON collaboration H.Ejiri*, T.Itahashi, K.Matsuoka, M.Nomachi, T. Shima, S. Umehara, RCNP and Physics OULNS, Osaka Univ. P.J.Doe, R.G.H.Robertson*, D.E.Vilches, J.F.Wilkerson 、 D. I. Will. CENPA, Univ. Washington. S.R.Elliott, V. Gehman, LANL J.Engel. Phys.Astronomy, Univ. North Carolina. M.Finger, M. Finger, K. Kuroda, M. Slunecka, V. Vrba. Phys. Charles Univ. and CTU Prague K.Fushimi, H. Kawauso, K. Yasuda, GAS, Tokushima Univ. Tokushima M. Greenfield, ICU, Tokyo. R. Hazama, Hiroshima Univ. H. Nakamura, NIRS. A. Para FNAL A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov A. Titov, JINR V. Vatulin, P. Kavitov, VNIIEF S. Yoshida, Tohoku Univ. Sendai * Contact persons.

19 Thank you for your attention

20 . 3 GeV-p  Neutrino Weak probes SNS 1 6 10 15 7 10 14 J - PARC 3 1.2 10 15 3 10 14 p + Hg  n  +,  +   + +   +  e+ + e + anti-  C.Volpe


Download ppt "Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. *NIRS & CTU, Praha For the MOON collaboration Sendai."

Similar presentations


Ads by Google