Presentation is loading. Please wait.

Presentation is loading. Please wait.

LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October 11-12 th 2009.

Similar presentations


Presentation on theme: "LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October 11-12 th 2009."— Presentation transcript:

1 LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009

2 Fundamental Interactions - Key questions - What is the origin of the matter dominance in the universe? - Which fundamental symmetries are conserved in nature? - What are the symmetries behind the conservation laws? - What are the properties and nature (Dirac or Majorana) of the neutrino? - What are the properties of antimatter? - Are there new sources of CP violation? - Is there new physics beyond the standard model? - What are the detailed properties of the fundamental forces? - Are there other forces than the four known ones? - Are there new particles and what is their role in the universe? - What is the structure of the vacuum? - What are the precise values of the fundamental constants? - Are there more than three generations of fundamental fermions?

3 1. Symmetries 1.1 Parity 1.2 Time reversal and CP violation in the quark sector 1.3 CPT and Lorentz invariance 2. Fundamental Fermions 2.1 Neutrino masses and mixing matrix 2.2 Quarks 2.3 Rare decays 2.4 New (time reversal invariant) interactions in nuclear, n and μ β-decay 3 Properties of known interactions 3.1 Electroweak interaction and fundamental constants 3.2 QCD 3.3 Gravity Fundamental Interactions - Key issues

4 APV is complementary to parity-violating electron scattering (A PV in graph) in determining the effective weak couplings of the quarks, to probe fundamental interactions and put constraints on New Physics beyond SM. e.g. APV - test of the SM through measurements of the Weinberg angle 1.1 Parity Future measurements: - different cesium isotopes - trapped atoms and ions with enhanced APV effect, in casu Fr, Ba +, Ra

5 1.2 Time reversal and CP violation in the quark sector A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP. Investigate different systems, providing complementary information on different sources of CP violation Some current constraints : e.g. permanent EDMs

6 e.g. neutron EDM arguably ruled out more speculative theories than any other experiment in physics (Ramsey) other approaches : - other particles (muon, …) - atoms (Hg, Tl, Ra, Rn, …) - molecules (YbF, PbO *, HfO +, … ) - condensed systems (liq. Xe, … ) - storage ring exps. (d, p, …)

7 1.3 CPT e.g. spectroscopy of - antiprotonic atoms (pbar-p, pbar-He) - antihydrogen (i.e. e + - pbar AD-CERN, FLAIR-GSI AD-CERN ( ~4 x MeV/c p-bar every 85 s) : pbar-He trap p in a long-lived 3-body system :

8 2.1 Neutrino masses and mixing matrix Neutrino masses Dirac or Majorana particle ?? - direct measurements: KATRIN spectrometer, sensitivity = 0.2 eV MARE calorimeters, phase-II sensit. = 0.2 eV - 0 double beta decay: CUORE ( 130 Te), SuperNEMO ( 150 Nd or 82 Se), GERDA ( 76 Ge): sensitivity 0.05 – 0.3 eV (enrichment of isotopes – experiments to support matrix elements calculations) Neutrino mixing matrix: atmospheric reactor solar oscillation experiments (e.g. Double Chooz) determine size of 13 if 13 large search for CP violation in lepton sector (e.g. beta-beams)

9 10/02/ (61) from decays from K decays Major progress: - addition of new isotopes - precision mass measrmts. w. Penning traps - progress in calculations of corrections Strong limits on physics beyond SM Future: - improve precision - neutron decay - T = 1/2 mirror transitions CVC 1.3 x Quarks - CKM matrix

10 2.5 Search for non V-A interactions Requirements : - improved (2 nd generation) + new setups - trapped polarized nuclei - methods to precisely determine degree of polarization -... Recently major progress from atom/ion traps (nuclear) / spectrometers (neutron) Further progress from measurements of: - beta-neutrino correlation (0.1% precision) - beta asymmetry parameter (0.5% precision) - neutrino asymmetry (0.1% precision) - longitudinal beta particle polarization (1%) + beta asymmetry

11 3.1 Properties of electroweak interaction & fundamental constants Example: Experiments with highly charged ions (H-like, He-like, Li-like) e.g. determine g-factors (nuclear / HITRAP - test QED in extreme conditions (high electric fields) - investigate structure of the vacuum 3.3 Gravity Gravitation of antimatter e.g. trapped and laser-cooled antihydrogen (AD, FLAIR)


Download ppt "LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October 11-12 th 2009."

Similar presentations


Ads by Google