Presentation is loading. Please wait.

Presentation is loading. Please wait.

Double Beta Decay review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG, University Bordeaux 1 CNRS/IN2P3 Thanks to:

Similar presentations


Presentation on theme: "Double Beta Decay review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG, University Bordeaux 1 CNRS/IN2P3 Thanks to:"— Presentation transcript:

1 Double Beta Decay review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG, University Bordeaux 1 CNRS/IN2P3 Thanks to: G. Gratta, S., A. Giuliani, S. Schoenert, T. Kishimito, M. Nomachi, K. Zuber, M. Chen, K. Inoue NNN 2010, Toyama Dec,

2 - Nature of neutrino : Dirac (  ) or Majorana ( = ) - Absolute neutrino mass and neutrino mass hierarchy - Right-handed current interaction - CP violation in leptonic sector - Search of Supersymmetry and new particles Double Beta decay: physics case - Leptonic number violation (A,Z)  (A,Z+2) + 2e -

3 Double Beta decays 2nd order process of weak interaction Already observed for several nuclei Single beta decay forbidden (energy) or strongly suppressed by large angular momentum change Decay to ground state or excited states  e-e- e-e-   e-e- e-e-  L =2   Majorana neutrino ( = )

4 (V+A) current,, (A,Z) (A,Z+2) + 2 e - Process parameters T 1/2 = F(Q ,Z) |M| 2 2 Phase space factor Nuclear matrix element Effective mass: = m 1 |U e1 | 2 + m 2 |U e2 | 2.e i  1 + m 3 |U e3 | 2.e i  2 |Uei|: mixing matrix element  1 et  2: Majorana phase 5 Light neutrino exchange Majoron emission SUSY ’ 111, ’ 113 ’ 131,….. Neutrinoless Double Beta decay Discovery implies  L=2 and Majorana neutrino

5  observables Electron energy sum 150Nd distribution s arxiv: v1 [hep-ex] Angular distribution Mass mechanism Mass mechanism RHC Ee1 – Ee2 distribution RHC   From G. Gratta

6 Experiments Isotopes TechniquesMain caracteristics NEMO3 100 Mo, 82 Se Tracking + calorimeterBckg rejection, isotope choice SuperNEMO 82 Se, 150 Nd Tracking + calorimeterBckg rejection, isotope choice Cuoricino 130 Te BolometersEnergy resolution, efficiency CUORE 130 Te BolometersEnergy resolution, efficiency GERDA 76 Ge Ge diodesEnergy resolution, eficiency Majorana 76 Ge Ge diodesEnergy resolution, efficiency COBRA 130 Te, 116 Cd ZnCdTe semi-conductorsEnergy resolution, efficiency EXO 136 Xe TPC ionisation + scintillationMass, efficiency, final state signature MOON 100 Mo Tracking + calorimeterCompactness, Bckg rejection CANDLES 48 Ca CaF 2 scintillating crystalsEfficiency, Background SNO Nd Nd loaded liquid scintillatorMass, efficiency XMASS 136 Xe Liquid XeMass, efficiency CARVEL 48 Ca CaWO4 scintillating crystalsMass, efficiency Yangyang 124 Sn Sn loaded liquid scintillatorMass, efficiency DCBA 150 Nd Gazeous TPCBckg rejection, efficiency Why so many experiments or projects ?

7 IsotopeQ  (MeV) Abondance isotopique (%) G 0 (an -1 ) x Enrichment method 48 Ca Laser ? 76 Ge Centrifugation 82 Se Centrifugation 96 Zr Laser ? 100 Mo Centrifugation 116 Cd Centrifugation 130 Te Centrifugation 136 Xe Centrifugation 150 Nd Laser ? Centrifugation ? Double beta decay isotopes

8 arXiv: v2 : Tomás R. Rodríguez, G. Martinez-Pinedo Nuclear Matrix Element

9 Q  MeV Ge 130 Te 76 Xe 100 Mo 82 Se Nd 96 Zr 48 Ca Background components +  for tracko-calo or calorimeter with modest energy resolution Natural radioactivity ( 40 K, 60 Co, 234m Pa, external 214 Bi and 208 Tl…) 214 Bi and Radon, 208 Tl (2.6 MeV  line) and Thoron,  from (n,  ) reaction and muons bremstrahlung + for pure calorimeter Surface or bulk contamination in  emitters, cosmogenic production MeV Highest gamma-ray from natural radioactivity

10  AA M. t N Bckg.  E (y)  M 1/4 Calorimeter Semi-conductors Bolometers Source = detector ,  E     Calorimeter (Loaded) Scintillator Source = detector ,  Tracko-calo Source  detector N Bckg, isotope choice Xe TPC Source = detector   ,M, (N Bckg )   M: masse (g)  : efficiency K C.L. : Confidence level N: Avogadro number t: time (y) N Bckg : Background events (keV -1.g -1.y -1 )  E: energy resolution (keV) Experimental sensitivity

11 Calorimeter vs Tracko-calo  Calorimeter Tracko-calo High energy resolution Modest background rejection High background rejection Modest energy resolution keV MeV

12 What is the most favorable isotope and the best technique ?  Phase space factor: 48 Ca, 150 Nd, 96 Zr  Nuclear matrix element  not yet reliable predictions  Backgrounds > 2,6 MeV 48 Ca, 150 Nd, 96 Zr, 100 Mo, 82 Se, 116 Cd > 3.2 MeV (radon) 48 Ca, 150 Nd, 96 Zr  Enrichment: 130 Te (Natural isotopic abundance 34%) 136 Xe (gaz, easy to enrich)  Best techniques :  Bolometers, Ge diodes: energy resolution 130 Te ( 82 Se, 116 Cd), 76 Ge  Tracko-calo : background rejection 82 Se, ( 48 Ca, 150 Nd)  TPC Xe: background rejection if tagging of Ba 136 Xe  Large liquid scintillator: mass of isotopes 136 Xe, 150 Nd A problem to understand: the background at ~100 kg (related to istopes and techniques) Why so many experiments or projects ?

13 Effective neutrino mass and  – 1000 cts/yr/ton 1 – 10 cts/yr/ton 0.1 – 1 cts/yr/ton Isotope mass ~ 10 kg 2011 ~ 1000 kg Required background level Heidelberg-Moscow (2001) ~11 kg of enriched Ge  |m ee | S T Petcov 2009 J. Phys.: Conf. Ser ~ 100 kg 2015 This experimental review will be focused on the last results of 10 kg and 100 kg experiments

14 SNO++ ( 150 Nd) EXO ( 136 Xe) Majorana ( 76 Ge) Cuoricino/CUORE ( 130 Te) GERDA ( 76 Ge) COBRA ( 116 Cd) CANDLES ( 48 Ca) KamLAND-ZEN ( 136 Xe) MOON ( 100 Mo)  (0 ) : experiments and projects Calorimeter Source = detector     Tracko-calo Source  detector EXO gaz ( 136 Xe) DCBA ( 150N d) NEMO3/SuperNEMO ( 82 Se, 150N d, 48C a) NEXT ( 136 Xe)

15 < eV (90% CL) T 1/2 > yr (90% CL) Eur. Phys. J., A 12 (2001) k.yr 0.06 cts/keV/kg/yr Heidelberg-Moscow (2001) ~11 kg of enriched 76 Ge (86%) 8.9 kg.yr without PSA 4.6 kg.y with PSA Phys. Rev. D65 (2002) IGEX (2002) ~ 8.4 kg of enriched 76 Ge (86%) T 1/2 > yr (90% CL) < eV (90% CL)  Present situation Ge diode detectors

16 Bolomètres: CUORICINO 214 Bi ( 238 U chain) 208 Tl ( 232 Th chain) 60 Co pile up 5.3 kg.an T 1/2 > ans (90%) <0.5 – 2.4 eV  Energy (keV) Cuoricino Heat sink Thermometer Double beta decay Crystal absorber Bolometers of TeO 2  E/E ~ 8 keV at keV Located in Gran Sasso Laboratory (Italy) Stopped in 2008

17 Bolomètres: CUORICINO Cuoricino results

18 CUORE

19 750 kg of TeO 2  203 kg of 130 Te Array of 988 TeO 2 5x5x5 cm 3 crystals Improvement of surface event rejection Data taking foreseen in 2013 N bckg =0.01 cts.keV -1.kg -1.yr -1 T ½ > yr < 0.03 – 0.17 eV Goal :N bckg =0.01 cts.keV -1.kg -1.yr -1 Expected sensitivity (Italy, USA,Spain) (Factor 20 compared to Cuoricino) LUCIFER: R&D on scintillating bolometers like 82Se 116 CdWO 4 CUORE Test of 1 tower of CUORE in Cuoricino in 2011

20 Vertex  events E 1 +E 2 = 2088 keV  t= 0.22 ns (  vertex)  = 2.1 mm E1E1 E2E2 e-e- e-e- NEMO 3 Tracko-calo detector Drift chamber (6000 cells) Plastic scintillator + PMT (2000) 10 kg of isotopes  E/E (FWHM) : 8 3 MeV Located in Modane Underground Lab (France) Bckg: cts/keV/kg/yr Bckg  sources   thickness  mg/cm 2 ) 82 Se (0,93 kg)  Multi-source detector

21 NEMO 3 Results 100 Mo, 23.4 kg.yr events Bosonic fraction of neutrino wave function Sin  < 0.6

22 NEMO 3 Results

23

24 7 kg 100 kg isotope mass M 15 % ~ 30 % isotope 100 Mo 82 Se, 150 Nd or 48 Ca T 1/2 (  ) > ln 2  M    T obs N 90 N A A  NEMO-3 SuperNEMO internal contaminations 208 Tl and 214 Bi in the  foil 208 Tl: < 20  Bq/kg 214 Bi: < 300  Bq/kg 208 Tl <  Bq/kg if 82 Se: 214 Bi < 10  Bq/kg T 1/2 (  ) > 2 x y < 0.3 – 1.3 eV T 1/2 (  ) > y < 50 – 110 meV energy resolution (FWHM) 3 MeV efficiency  From NEMO 3 to SuperNEMO

25 20 modules for 100 kg Top view Source (40 mg/cm 2 ) 12m 2 Tracking (~ Geiger cells). Calorimeter (500 channels) 5 m 1 m Total:~ – geiger cells channels ~ PMT SuperNEMO conceptual design

26 SuperNEMO phase I : 2011 – 2014 Contruction demontrator module with 7 kg of 82Se (1 kg of 48 Ca ?) 2013 Sensitivity in 1 year: T 1/2 < 0.2 – 0.6 eV SuperNEMO phase II : 2014 – kg of 82 Se (or 150 Nd,or 48 Ca) T 1/2 > y < 0.05 – 0.14 eV  E/E < 4% Q  demonstrated (< 1 MeV) FWHM = 7,1 % (7,6% before energy loss correction) LSM extension Commissioning of wiring robot SuperNEMO

27 Ge detector improvements Strategies: Ge detectors in liquid nitrogen to remove materials Active shielding and segmentation of detectors to reject gamma-rays e-e-  detector segments e-e- Liquid argon scintillation crystal anti-coincidenceDetector segmentation pulse shape analysisR&D: liquid argon anti-coincidence

28 GERDA Removal of matter Use of liquid nitrogen or argon for active shielding Segmented detectors in futur Improvement of Pulse Shape Analysis PHASE I: 17.9 kg of enriched 76 Ge (from HM and IGEX) In 1 year of data if B=10 -2 cts/keV/kg/yr (check of Klapdor’s claim) Start 2011 at Gran Sasso T 1/2 > yr < 0.25 eV PHASE II: 40 kg of enriched 76 Ge (20 kg segmented) 2012 if B=10 -3 cts/keV/kg/an T 1/2 > yr in 3 years of data < 0.1 eV

29 GERDA Nov/Dec.’09: Liquid argon fill Jan ’10: Commissioning of cryogenic system Apr/Mai ’10: emergency drainage tests of water tank Apr/Mai ’10: Installation c- lock May ’10: 1st deployment of FE&detector mock-up June ‘10: Commissioning with nat Ge detector string Soon: start Phase I physics data taking

30 Majorana Very pure material (Electroformed copper) Segmentation PSD improvement R&D phase kg of 86% enriched 76 Ge crystals Some of the crystals segmented T 1/2 > yr { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/3419615/12/slides/slide_29.jpg", "name": "Majorana Very pure material (Electroformed copper) Segmentation PSD improvement R&D phase 30-60 kg of 86% enriched 76 Ge crystals Some of the crystals segmented T 1/2 > 1.", "description": "10 26 yr

31 EXO kg of 136 Xe, no Ba ion tagging Installation in WIPP underground lab Possibility to measure  EXO-200 full of natural Xe - Tuning on all systems - Engineering runs - Physics mode as soon as possible Liquid Xe TPC Ionization + scintillation  E/E (FWHM)= 3.3  Possibility of Baryum ion tagging by Laser florescence ( 136 Xe  136 Ba e R&D in progress Gazeous TPC R&D (USA, Canada, Switzerland, Russia)

32 SNO++ Scintillator loaded with Nd. only internal Th and 8 B solar neutrino backgrounds are important 500 kg of 150 Nd 1 year = 150 meV Test of light attenuation Study of Nd purification (factor 1000 per pass in Th and Ra) 56 kg of 150Nd (0,1 % of natural Nd) 4 yr of data ~0.08 eV 500 kg of 150Nd 4yr ~ 0.03 eV

33 KamLAND-Zen

34 CANDLES Pure CaF2 crystals Wave length shifter in LS PSD to reject  and  CANDLES III 10 3 cm 3 × 96 crystals  305 kg Data taking in Kamioka Expected BG: 0.14 event/yr (30 µBq/kg) ~0.5 eV CANDLES IV : 3 tons of CaF 2 (3  Bq/kg) 6 yr ~0.1 eV (Japan)

35 DCBA Drift Chamber beta-ray Analyser Prototype with 207 Bi : 10% (FWHM) energy resolution X position  = 0.5 mm Y position  = 0.02 mm X position  = 6 mm

36 4x4x4 detector array = 0.42 kg CdZnTe Installed at LNGS Test of coincidence rejection Measure of 113 Cd COBRA Array of 1cm 3 CdZnTe detectors (UK, Germany, Italy, poland, Slovaquia, Finland, USA) Cd-113 beta decay with half-life of about yrs

37 TechniqueLocation Mass kg start Bckg Cts/keV/kg/yr T 1/2 (0 ) meV EXOLiquid Xe 136 Xe WIPP (USA) < 109 – 135 (2yr) GERDADiode Ge 76 Ge Gan sasso (Italy) < 250– 380 < CUORE-0 CUORE Bolometers 130 Te Gan sasso (Italy) < < < SN module0 SuperNEMO Tracko-calo 82 Se, 150 Nd Modane (France) < 200 –600 (1yr) < 53 – 140 SNO+Liq. Scint. 150 Nd SNOLAB (Canada) < 100 KamLAND Liq. Scinti 136 Xe Kamioka (Japan) < ~ 60 (2 yr) Sensitivities

38 Summary Present 10 kg experiment reach a sensitivity < 0.3 – 1 eV Background ~100 – 1000 cts/ton/yr 1OO kg experiments will reach a sensitivity on < ~50 meV in the next 5 yr Background ~ 1 – 10 cts/ton/yr (Remark: to win a factor 10 on bckg it takes 5 – 10 yrs) Step by step approach: GERDA, MAJORANA, CUORE, SuperNEMO Agressive approach (no 10 kg prototype): EXO, SNO++, KamLAN-Zen, NEXT Possibility to enrich 150 Nd, 96 Zr or 48 Ca in the futur ? 100 kg experiments essential to validate technique and background for 1 ton experiments

39 100 kg experiments CUORE 130 Te bolometers CUORE-0 39 kg of nat Te 13 kg of 130 Te Data taking 2011 CUORE 200 kg Data taking 2013 (scintillating bolometres ?) GERDA Ge diode in LAr 2010: 18 kg of 76 Ge (HM and IGEX crystals) 1st results : 40 kg of 76Ge MAJORANA Ge segmented Diode 2011: 20 kg of nat Ge 2013 ? : 30 kg of 76 Ge SuperNEMO tracko-calo Module-0 7 kg of 82 Se ( 150 Nd) Data taking Module 100 kg Data taking 2015 Step by step approach Gran Sasso laboratory DUSEL laboratory Modane laboratory + Energy resolution + Natural Te + Energy resolution + Background rejection + Multi-isotopes

40 100 kg experiments Agressive approach (no 10 kg prototype) SNO++ Nd salt + liquid scintillator 2010: 740 kg of nat Nd (44 kg of 150 Nd) Dissolved in scintillator EXO liquid Xenon 2010: 200 kg of 136 Xe Results 2013 Ba tagging R&D 2011: 400 kg of 136 Xe Dissolved in liq. scintillator NEXT Xe high pressure TPC 2011: 1 kg of 136 Xe 2013 : 100 kg KamLAND-Zen Xe + liq. scintillator Kamioka laboratory Canfranc laboratory SNOLAB laboratory WIPPL laboratory + Large mass + Possibility to tag daughter nucleus + Large mass + low background detector + Large mass + Background rejection

41  signal ? HM claim T 1/2 = (0.69 – 4.18) = (90%) 2006: Improvement of PSA (6  ) = 0.32 ± 0.03 eV 2004 (4  ) T 1/2 = yr

42 arXiv: v2 : Tomás R. Rodríguez, G. Martinez-Pinedo From F. Simkovic (neutrino 2010) Nuclear Matrix Element


Download ppt "Double Beta Decay review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG, University Bordeaux 1 CNRS/IN2P3 Thanks to:"

Similar presentations


Ads by Google