Presentation is loading. Please wait.

Presentation is loading. Please wait.

Diffusion Tensor Processing with Log-Euclidean Metrics

Similar presentations


Presentation on theme: "Diffusion Tensor Processing with Log-Euclidean Metrics"— Presentation transcript:

1 Diffusion Tensor Processing with Log-Euclidean Metrics
Vincent Arsigny, Pierre Fillard, Xavier Pennec, Nicholas Ayache. Friday, September 23rd, 2005.

2 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
What are ‘Tensors’? In general: any multilinear mapping. E.g. a vector, a matrix, a tensor products of vectors… In this talk: a symmetric, positive definite matrix. Typically: a covariance matrix (origin: DT-MRI) A 3x3 tensor can be visualized with an ellipsoid. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

3 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Use of Tensors Statistics: covariance matrices. Recently introduced in non-linear registration [Commowick, Miccai'05], [Pennec, Miccai'05]. Image processing (edges, corner dectection, scale-space analysis...) [Fillard, DSSCV'05]. Continuum mechanics : strain and stress tensors, etc. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

4 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Use of Tensors Generation of adapted meshes in numerical analysis for faster PDE solving (SMASH project): [Alauzet, RR-4981], GAMMA project. Application to fluid mechanics. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

5 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Variability tensors [Fillard, IPMI'05] Anatomical variability: local covariance matrix of displacement w.r.t. an average anatomy. Variability along sulci on the cortex and their extrapolation. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

6 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Diffusion MRI (dMRI) Water molecules diffuse in biological tissues. MR images can be weighted with diffusion [Le Bihan, Nature rev. in Neurosc., 2003] September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

7 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Diffusion Tensor MRI Simple Model: Brownian motion. Diffusion Tensor: local covariance of diffusion process. DT images: tensor-valued images. Typical exemple, from a 1.5 Tesla scanner, 128x128x30, [Arsigny,RR-5584, 2005] September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

8 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Tensor Processing Needs: interpolation, extrapolation, regularization, statistics... Generalization to tensors of classical vector processing tools. HOW?? September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

9 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Outline Presentation Euclidean and Affine-Invariant Calculus Log-Euclidean Framework Experimental Results Conclusions and Perspectives September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

10 Defects of Euclidean Calculus
Tensors are symmetric matrices. Euclidean operations can be performed. simplicity practically : unphysical negative eigenvalues appear very often September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

11 Defects of Euclidean Calculus
Typical 'swelling effect' in interpolation: In DT-MRI: physically unacceptable ! Interpolated tensors Interpolated volumes September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

12 Remedies in the literature
Operations on features of tensors, propagated back to tensors: dominant directions of diffusion [Coulon, IPMI’01] orientations and eigenvalues separately [Tschumperlé, IJCV, 02, Chefd’hotel JMIV, 04] Drawback: some information left behind. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

13 Remedies in the literature
Specialized procedures: Affine-invariant means based on J-divergence [Wang, TMI, 05] Interpolation on tensors with structure tensors [Castagno-Moraga, MICCAI’04] Etc. Drawback: lack of general framework. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

14 A Solution: Riemannian Geometry
General framework for curved spaces (e.g. rotations, affine transformations, diffeomorphisms, and more). Allows for the generalization of statistics [Pennec, 98] or PDEs [Pennec, IJCV, 05]. Idea: define a differentiable distance between tensors. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

15 A Solution: Riemannian Geometry
A scalar product for each tangent space of the manifold. Distance between 2 points: minimum of length of smooth curves joining them. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

16 A Solution: Riemannian Geometry
Each metric induces a generalization of the arithmetic mean, called ‘Fréchet mean’. The mean point minimizes a ‘metric dispersion’: E ( S i ; w ) = a r g m n T P : d s t 2 September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

17 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Choice of metric Idea: rely on relevant/natural invariance properties First proposition: affine-invariant metrics [Fletcher (CVAMIA’04), Lenglet (JMIV), Moakher (SIMAX), Pennec (IJCV), 04]. Computations are invariant w.r.t. any (affine) change of coordinate system. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

18 Affine-invariant metrics
Excellent theoretical properties: no 'swelling effect' non-positive eigenvalues at infinity symmetry w.r.t. matrix inversion High computational cost: lots of inverses, square roots, matrix exponential and logarithms... September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

19 Affine-invariant metrics
Distance between two tensors: Geodesic between and (parameter ): d ( S 1 ; 2 ) = k l o g : S 1 S 2 t S 1 2 : e x p t l o g ( ) September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

20 Beyond affine-invariant metrics
Quotations from [Pennec, RR-5255]: “The main problem is that the tensor space is a manifold that is not a vector space” (page 5). “Thus, the structure we obtain is very close to a vector space, except that the space is curved” (page 30). Not a vector space with usual operations '+' and '.' September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

21 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Outline Presentation Euclidean and Affine-Invariant Calculus Log-Euclidean Framework Experimental Results Conclusions and Perspectives September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

22 A novel vector space structure
References: [Arsigny, Miccai’05], [Arsigny, RR-5584]. French patent pending. The tensor space is a vector space with proper operations. Idea: use one-to-one correspondence with symmetric matrices, via matrix logarithm and exponential. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

23 A novel vector space structure
New 'addition', called 'logarithmic multiplication': New 'logarithmic scalar multiplication': S 1 2 = e x p ( l o g ) + ~ S = e x p ( : l o g 1 ) September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

24 Metrics on Tensors Tensor Space Algebraic structures Invariant metric
Homogenous Manifold Structure Vector Space Structure Algebraic structures Invariant metric Euclidean metric Affine-invariant metrics Log-Euclidean metrics September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

25 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Distances Log-Euclidean framework: Affine-invariant framework: d ( S 1 ; 2 ) = k l o g d ( S 1 ; 2 ) = k l o g : September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

26 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Geodesics Log-Euclidean case: Affine-invariant case: e x p ( 1 t ) : l o g S + 2 S 1 2 : e x p t l o g ( ) September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

27 Log-Euclidean metrics
Invariance properties: Lie group bi-invariance Similarity-invariance, for example with (Frobenius): Invariance of the mean w.r.t. d i s t ( S 1 ; 2 ) = T r a c e l o g S 7 ! September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

28 Log-Euclidean metrics
Exactly like in the affine-invariant case: no 'swelling effect' non-positive eigenvalues at infinity symmetry w.r.t. matrix inversion. Practically, what differences between the two (families of ) metrics? September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

29 Log-Euclidean vs. affine-invariant
with DT images, very similar results. Identical sometimes. Reason: associated means are two different generalizations of the geometric mean. In both cases determinants are interpolated geometrically. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

30 Log-Euclidean vs. affine-invariant
Small difference: larger anisotropy in Log-Euclidean results. (Theoretical) reason: inequality between the 'traces' of the Log-Euclidean and affine-invariant means: T r a c e ( E A I S ) < L w h n v 6 = September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

31 Log-Euclidean vs. affine-invariant
On usual DT images, the Log-Euclidean framework provides: simplicity: Euclidean computations on logarithms! faster computations: means computed 20 times faster, computations at least 4 times faster in all situations. larger numerical stability. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

32 Log-Euclidean vs. affine-invariant
Log-Euclidean mean (explicit closed form): Affine-invariant (Fréchet) mean (implicit barycentric equation): E L ( S i ; w ) = e x p P N 1 l o g : P N i = 1 w l o g E A I ( S ; ) 2 : September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

33 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Outline Presentation Euclidean and Affine-Invariant Calculus Log-Euclidean Framework Experimental Results Conclusions and Perspectives September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

34 Synthetic interpolation
Typical example of linear interpolation: Euclidean Affine-invariant Log-Euclidean September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

35 Synthetic interpolation
Typical example of synthetic bilinear interpolation: Euclidean Affine-invariant Log-Euclidean September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

36 Interpolation on real DT-MRI
Reconstruction by bilinear interpolation of a downsampled slice in mid-sagital plane: Original slice Euclidean Log-Euclidean September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

37 Regularization of tensors
Anisotropic regularization on synthetic data: Original data Noisy data Euclidean reg. Log-Euc. reg. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

38 Mean reconstruction error
Dissimilarity Measure Euclidean Regul. Affine-inv. Regul. Log-Eucl. Regul. Mean Eucl. error 0.228 0.080 0.051 Mean Aff-inv. error 0.533 0.142 0.119 Mean Log-Eucl. error 0.532 0.135 0.111 September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

39 Regularization of tensors
[b] [c] [d] 3D clinical DT image [a] raw data [b] Euclidean reg. [c] Log-Euc. reg. [d] Abs. difference (x100!) between Log-Euc. And Affine-inv. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

40 Regularization of tensors
FA Gradient Effect of anisotropic regularization on Fractional Anisotropy (FA) and gradient: September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

41 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Tensor Estimation [a] [b] [c] [a] Algebraic Tensor estimation on the logarithm of DWIs [b] Log-Euclidean Tensor estimation directly on DWIs [c] Log-Euclidean joint Tensor estimation and smoothing on DWIs Results from [Fillard, RR-5607] September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

42 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Fiber Tracking Corticospinal tract reconstructions after classical estimation or Log-Euclidean joint estimation and smoothing [Fillard, RR-5607]. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

43 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Outline Presentation Euclidean and Affine-Invariant Calculus Log-Euclidean Framework Experimental Results Conclusions and Perspectives September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

44 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Conclusions Log-Euclidean Riemannian framework: fast and simple. Has excellent theoretical properties. Effective and efficient for all usual types of processing on diffusion tensors. September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

45 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.
Perspectives In-depth evaluation/validation of existing Riemannian frameworks on tensors Other relevant frameworks? Log-Euclidean framework allows for straightforward statistics on diffusion tensors Extension to more sophisticated diffusion models? September 23rd, 2005 Vincent Arsigny, Séminaire Croisé on Tensors, INRIA.

46 Thank you for your attention! Any questions?


Download ppt "Diffusion Tensor Processing with Log-Euclidean Metrics"

Similar presentations


Ads by Google