Presentation is loading. Please wait.

Presentation is loading. Please wait.

R. DOSIL, X. M. PARDO, A. MOSQUERA, D. CABELLO Grupo de Visión Artificial Departamento de Electrónica e Computación Universidade de Santiago de Compostela.

Similar presentations


Presentation on theme: "R. DOSIL, X. M. PARDO, A. MOSQUERA, D. CABELLO Grupo de Visión Artificial Departamento de Electrónica e Computación Universidade de Santiago de Compostela."— Presentation transcript:

1 R. DOSIL, X. M. PARDO, A. MOSQUERA, D. CABELLO Grupo de Visión Artificial Departamento de Electrónica e Computación Universidade de Santiago de Compostela Curvature dependent diffusion for feature detection in 3D medical images

2  Objectives  Calculus of gradient and curvature  Detection of boundaries and corners  Applications  Energy minimization techniques: definition of image potentials  Matching techniques: detection of characteristic features Feature detection in medical images

3  Problems: Noise, textures,...  Erroneous calculus of gradient and curvature  Failure in boundary and corner detection  Typical solution: gaussian smoothing  Alteration of gradient and curvature values  Dislocation of boundaries and rounding of corners  Proposal: use of adaptive filtering based on diffusion processes Feature detection in medical images

4 I. Introduction II. Feature enhancement with diffusion  Tangential diffusion  Construction of the diffusion tensor  Threshold parameter III. Corner preserving diffusion  Previous works  Curvature dependent diffusivity IV. Results Outline

5  Diffusion equation with Introduction

6  Linear  C is a scalar constant  It blurs boundaries as gaussian filtering does  Nonlinear (Perona & Malik, 1990)  C depends on local image properties  If C is a decreasing function of ||  u|| Boundaries are not blurred Boundaries are not blurred  Noise is preserved at surfaces  Nonlinear anisotropic (Weickert, 1994)  C is a tensor  Flux vector is not parallel to gradient  Different diffusivity values i for different directions e i Introduction

7  Tangential diffusion:  Diffusivity is reduced in the normal dir. at each point Boundaries are not blurred Boundaries are not blurred  Diffusion is maintained in the tangent plane Reduces noise by flattening surfaces Reduces noise by flattening surfaces  It rounds corners Feature enhancement with diffusion

8  Construction of C  e i are the eigenvectors of the hessian matrix  i are their correspondent desired eigenvalues Eigenvectors e i Eigenvalues i Normal g (||  u||,  ) Max. curvature tangent 1 Min. curvature tangent 1 Feature enhancement with diffusion

9  Threshold parameter   Represents the gradient threshold at which flux stops growing  Automatic estimation of  using robust statistics (Black, 1998) Feature enhancement with diffusion

10  Previous work by Krissian, 1996  Diffusion in the max. curvature dir. is removed Eigenvectors e i Eigenvalues i Normal g (||  u||,  ) Max. curvature tangent 0 Min. curvature tangent 1 It avoids corner rounding It avoids corner rounding  Noise reduction is lower Corner preserving diffusion

11  Curvature dependent diffusivity  Diffusion in the max. curvature direction depends on a corner measure Eigenvectors e i Eigenvalues i Normal g (||  u||,  ) Max. curvature tangent g (corner,  ) Min. curvature tangent 1  Diffusion in the max. curvature dir. is reduced on corners  Remainder surface regions are flattened in the tangent plane Corner preserving diffusion

12 II. II. +  Filtering with four different diffusion schemes EigenvectorsABCD Normal1 g (||  u||,  ) Max. curvature tang. 110 g (corner,  ) Min. curvature tang  Construction of a synthetic image with gaussian noise of variance  = 50 Results: Comparison of different schemes

13 ABCD smoothed gradient max. curvature surface

14  Test with synthetic image with gaussian noise of variance  = 50 Original Max. curvature Gradient Smoothed gaussian anisotropic Surfaces Results: Anisotropic filter Vs Gaussian filter

15  Surface points location Error in location of corners Error in sphere radius estimation Results: Anisotropic filter Vs Gaussian filter

16  Curvature estimation Error in curvature estimation using gaussian filter Error in curvature estimation using anisotropic filter Results: Anisotropic filter Vs Gaussian filter

17  MRI image of aorta Results: Medical image example Original Smoothed with gaussian filter Smoothed with anisotropic diffusion

18  MRI image of aorta Gradient modulus Max. Curvature Gaussian filter Anisotropic filter Results: Medical image example

19  Contributions  Use of diffusion techniques to improve gradient and curvature measures in 3D medical imaging: –definition of image potentials –feature detection  Design of corner preserving diffusion filter  Automatic estimation of filter parameters  Future work  Introduction of adaptive estimation of threshold parameters Conclusions

20 End


Download ppt "R. DOSIL, X. M. PARDO, A. MOSQUERA, D. CABELLO Grupo de Visión Artificial Departamento de Electrónica e Computación Universidade de Santiago de Compostela."

Similar presentations


Ads by Google