Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics Results of Belle and Prospects for Belle II

Similar presentations


Presentation on theme: "Physics Results of Belle and Prospects for Belle II"— Presentation transcript:

1 Physics Results of Belle and Prospects for Belle II
Y.Sakai KEK Reference for physics prospects Physics at Super B Factory [arXiv: ] SuperB Progress Report [arXiv: ]

2 Physics at B factory B physics (~1.1nb) - CP violation & CKM
- Rare decays Charm physics (~1.3 nb) t physics (~0.9nb) two-photon processes New Resonance - ordinary & exotics B Y(4S) _ B c t- _ c t- Variety of Physics ! Complement/Cooperative with t/Charm factory !

3 Goal/Milestones of B-factory
Step1 2001 summer ! Discovery of CPV in B decays 2008 Step2 Precise test of KM and SM Step3 Search for NP Hints of NP Establish procedures (SUSY, Extra-dim…) SuperB-factory ~50 times more data (higher luminosity)

4 CP Violation Difference between particle & anti-particle
(matter & anti-matter) Universe: almost “matter” only (no anti-matter) Big-Bang  N(particles) = N(anti-particles) Sakhalov’s 3 conditions (1967): 1. baryon number violation 2. CP violation 3. existence of non-equiblium CPV is a key for Existence of Universe & us ! Andrei Sakharov ( )

5 Kobayashi-Maskawa: CPV
CPV: due to a complex phase in the quark mixing matrix CKM matrix dj uk W- Vkj Unitarity triangle * Wolfenstein representation Vud Vub 2 (a) * Vtd Vtb 3 (g) 1(b) Vcd Vcb *

6 KEKB Accelerator 8 GeV e- x 3.5 GeV e+: 22mrad crossing KEKB Belle
~1 km in diameter Mt. Tsukuba KEKB Belle e+ source Ares RF cavity Belle detector 8 GeV e- x 3.5 GeV e+: 22mrad crossing Lpeak = 2.11x1034 Integ. Lum. ~1040 fb-1

7 Peak Luminosity 2.11x1034 1.21x1034 >1fb-1/day >1 M BB _

8 Data at B-factories (have to switch to new units, 1 ab-1) (fb-1) _
772MBB “Intense Analysis Phase” _ 487MBB

9 charged particle tracking Muon / KL identification
Belle Detector , p0 reconstruction e+-, KL identification K/p separation Aerogel Cherenkov Counter n = 1.015~1.030 Electromagnetic Calorimeter CsI(Tl) 16X0 3.5 GeV e+ TOF counter K/p separation charged particle tracking 8.0 GeV e- Central Drift Chamber momentum, dE/dx 50-layers + He/C2H6 B vertex Muon / KL identification Si Vertex Detector 4-layer DSSD KL m detector 14/15 layer RPC+Fe

10 The Belle Collaboration
Nagoya U. Nara Women’s U. National Central U. National Taiwan U. National United U. Nihon Dental College Niigata U. Osaka RCNP Osaka City U. Panjab U. Peking U. PNNL Riken Saga U. USTC Seoul National U. Shinshu U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of Agri. and Tech. Toyama Nat’l College Torino Wayne S.U. VPI Yonsei U. BINP Bonn U. Charles U. Chiba U. U. of Cincinnati Fu-Jen C.U. Giessen U. Gyeongsang Nat’l U. Goethingen Hanyang U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow IHEP, Vienna Indiana U. ITEP Kanagawa U. KEK Karlsruhe U. KISTI Korea U. Krakow Inst. of Nucl. Phys. Kyungpook Nat’l U. EPF Lausanne Jozef Stefan Inst. / U. of Ljubljana / U. of Maribor Luther U. of Melbourne MPI 15 countries, ~60 institutes, ~400 collaborators

11 CPV in B0 decays = J/y B0 B0 K0 _ _ V*cb c b t b d s d V*td _ A fcp B0
- Sanda Bigi Carter = B0 fcp mixing Decay: A V*td _ t d b w B0 _ d b c s w B0 J/y K0 V*cb Initial: B0 B0 _ Interference Direct decay Mixing + Decay Oscillation Weak Phase difference frequency: Dmd (BH, BL) Decay-time dependent CPV

12 CPV in B0 decays = 2(a) 3(g) 1(b) _ A fcp B0 A - Sanda Bigi Carter
mixing Decay: A mixing 1(b) 2(a) 3(g) Vtd Vtb Vcd Vcb Vud Vub * -hf sin2f1 sin(Dmd Dt) _ Dt (decay time)[ps] B0 B0 Prob. ACP sin2f1 Decay (hf : CP eigenvalue)

13 Time-dep CPV Measurement
Flavor-tag (B0 or B0 ?) J/(f,h’) KS e e z t=0 fCP Vertexing Reconstruction eeff ~30% sDt~140ps B0 B0-tag Dt  z/cbg fit Extract CPV bg=0.425 (KEKB) 0.56 (PEP-II) same analysis method applied for all modes

14 sin2f1 : CPV observation First observed CPV in B (2001) 1137 events
B0 tag _ 1137 events B0 tag 2001 Asymmetry 31M BB First observed CPV in B (2001)

15 sin2f1 : Precision meas. 14000 signals 2006 535M BB 3.4% error ! _
0.6870.0280.012 0.670  0.023 B0 tag _ 14000 signals 2006 535M BB 3.4% error !

16 Measurement of CKM Complete test of KM & SM 2 3 1 Over constraint !
Determination of UT Complete test of KM & SM B pp, rp, rr * b u l-n * Vtd Vtb Vud Vub 2 B0-mixing (Dmd) B p/r l n (a) B rg 3 (g) 1 (b) B-  DcomK- * Vcd Vcb B0 D(*)+p- B0  (cc)K(*)0 b  c l-n B0  D*+D(*)-(K) B  D(*)l n Over constraint ! B experiments can provide all measurements !

17 Verification of KM for CPV
All consistent CPV: caused by a single phase of CKM matrix Verified by B-factory experiments 2008 Physics Nobel Prize

18 Next Challenge New Source of CPV should exists
In spite of Great Success of SM, there must be New Physics beyond SM at High Energy scale (SM is valid effective theory at current E-scale) Observed CPV in SM is not enough to explain matter dominance of Universe [>O(1010)] ! New Source of CPV should exists (beyond SM) One of Next important goals of Flavor Physics Energy Frontier Note) NP effects appear in Flavor Physics in various way !

19 Search for New Physics SuperKEKB KEKB CPV in B Rare B decays
provide Powerful tool for Search NP ( New Phase ) [ bsqq tCPV] Rare B decays excellent opportunities for NP search Loop diagram Penguins [bs(d) g, bs(d) l+l-] Key Decays involving t ( H) ANP ~ ASM (small/forbidden) t Decays (Lepton Flavor Violation = NP) : B-factory = t-factory Establish analyses Hint of NP SuperKEKB KEKB

20 NP : Precise CKM Still ~10% room for NP 50ab-1

21 - New Source of CPV: b  sqq X b s d t b f,h’.. f,h’.. s d - KS KS
_ B0 + KS KS Vts Vtb * SM: bs Penguin phase = (cc) K0 - + New Physics with New Phase Sbs ¹ Sbc , ADCP can ¹ 0 _ “b  ccs: sin2f1” (SM reference) deviation 21

22 Summary of New CPV search
B0 J/yK0  Reference point of SM No clear deviation seen in all modes (1~2s) New CPV effect can be seen with much larger data Super B-factory

23 Compelling measurement in a clean mode
SuperKEKB prospect B  fK0 at 50/ab with ~present WA values MC J/K0 fK0 bs This would establish the existence of a NP phase in bs penguins. δ(Sbs) ~ 50ab–1 Prospect Compelling measurement in a clean mode 23

24 Kπ Puzzle in B⁰/B⁺ CP Violation
B⁰  K⁻π⁺ B⁰  K⁺π⁻ B⁻  K⁻π⁰ B⁺  K⁺π⁰ B⁰ B⁺ _ Expected to be same DAKp = A(K+p−) − A(K+p0) = −0.147 ± 0.028 S.-W. Lin et al. (The Belle collaboration), Nature 452, 332 (2008). 5.3σ deviation  Hint of NP ?

25 Solutions to the DAKp Puzzle
See Nature commentary by Michael Peskin T T Expectation from current theory T & P are dominant  DAKp ~ 0 P C PEW T P Enhancement of large PEW  New physics Enhancement of large C with large strong phase to T  strong inter. !? Chiang et. al. 2004 Li, Mishima & Sanda 2005 Yoshikawa 2003; Mishima & Yoshikawa 2004; Buras et. al. 2004, 2006; Baek & London 2007; Hou et. al. 2007; Feldmann, Jung & Mannel 2008 Can this issue be resolved in a model-independent way by experiment ?

26 Model-indep. Sum Rule A(K0p0) B →Kp A(K0p+) Sum rule proposed by:
HFAG, ICHEP08 dA(K+p0) sum rule A(K0p+) measured (HFAG) expected (sum rule) Sum rule proposed by: M. Gronau, PLB 627, 82 (2005); D. Atwood & A. Soni, Phys. Rev. D 58, (1998). 26

27 SuperKEKB prospect Belle II, 50 ab-1 Important to measure A(K0p0)
dA(K+p0) Important to measure A(K0p0) precisely sum rule A(K0p+) B →K0p0 : main syst. uncertainty full systematics treated as non-scaling (conservative) 27

28 Charged Higss Hunting B-Factory:
Variety of Modes sensitive to Charged Higgs Some are only possible at B-Factory

29 Inclusive b  s g SM 657M BB Fully Inclusive measurement Data
Background subtracted

30 b  s g Summary

31 H+ Search: B+ +  (Decays with Large Missing Energy)
Sensitivity to new physics from charged Higgs The B meson decay constant, determined by the B wavefunction at the origin (|Vub| taken from indep. measurements.)

32 B->ν : Experimental Challenge
(4S) B- B+ n e+ ne B++, +e+e B-X Always > 2 neutrinos appear in B  t n decay _ Signature : 1 track +invisible Experimental Challenge !

33 B->ν : Experimental Challenge
(4S) B- B+ n e+ ne B++, +e+e B-X Tag-side: Full reconstruction Also for B  D(*)tn B  Knn _ Can be measured only by B-Factory !

34 B->ν Results 2.8s

35 B  D(*)tn B  D* tn : Lepton (t) polarization info.
Expected B ~ 1.4% in SM (large) But, large background (D*(**)ln, D*X) [e.g. D.S.Hwang EPJ C14,271(2000)] Always involve > 2 n (Missing E):

36 B  D(*)tn Results First Observation ! 657M BB B0  D*-t+n
[PRL 99, (2007)] First Observation ! [PRD 82, (2010)]

37 B  D(*)tn Summary

38 Constraints on charged Higgs
U. Haisch, hep-ph/ ; ATLAS curve added by Steve Robertson Also see (MSSM),D. Eriksson,F.Mahmoudi and 0.Stal

39 - D0-D0 Mixing Quark level: Box diagram SM box: O(10-9)
(~ B0-mixing) SM box: O(10-9) +Long distance: O(10-3~10-2) x=Dm/G y=DG/2G Large mixing, |x|>>|y|, CPV  New Physics ! Only mixing with up-type quark complementarity to down-type FCNC

40 D0-mixing : yCP Decays to CP eigenstates D0 → K+K- / p+p-
“lifetime” difference First Evidence (2007) ! PRL 98, (2007), 540fb-1

41 D0-mixing : Wrong sign D0  K-p+ : normal decay
D0  K+p- : Mixing Signal But, two sources need decay-time analysis to extract D0-D0 mixing _ “Wrong Sign” 400fb-1 PRL 96, (2006) (0,0) CL 96.1% BaBar, PRL 98, (2007), 384fb-1 1s 2s 3s 4s 5s likelihood contours 3.9s CDF, PRL 100, (2008), 1.5fb-1

42 D0-mixing : t-dep. Dalitz
D0  KSp+p- t most precise x meas. y (%) x (%) Belle, PRL 99, (2007), 540fb-1

43 D0-mixing : Summary HFAG x~y~1% ~ SM limit ! Mixing parameters
global fit to observables, only KK/pp, Kp and Kspp projected sensitivities included (no external constraints, e.g. dKp)

44 D0-mixing : prospect Mixing parameters 1 s @ 50 ab-1 1 s @ 50 ab-1
A.G. Akeroyd et al., arXiv: Mixing parameters global fit to observables, only KK/pp, Kp and Kspp projected sensitivities included (no external constraints, e.g. dKp)

45 Constraints from D0-mixing
4th generation of fermions R-parity violating SUSY c u b’ W+ W- D0 Vcb’ Vub’* D0 |Vub’Vcb’| mb’ [GeV] allowed area lines of constant |x| R couplings [GeV] allowed area lines of constant |x| E. Golowich et al., PRD76, (2007) E. Golowich et al., PRD76, (2007)

46 Hints/Sensitive to NP ….. CPV in b  s Penguin? A(B  Kp) Puzzle
Forwad-Backword Asy,.B  K*ℓ+ℓ− C7=−C7SM SM CKM Unitarity Triangle Large D0-mixing fL(B  VV) ≠ 1 Theoretical calculations using Vub, Dmd,eK Direct measurement tree ….. penguin

47 Identification of NP type
Identify by the pattern of deviations from SM SUSY models mSUGRA MSSM+R SU(5)+R U(2) FS degenerate non-degenerate ACP(s) S(K*) S() S(KS) S(BsJ/ ) e ?  e Measurements ✔: deviation from SM [based on T.Goto et.al. PRD77, (2008)]

48 Physics at Super B-factory
is “DNA chip of New Physics” + LHC,…  D. Hitlin

49 Energy Frontier vs Flavor Physics
Direct Production by High Energy Coll. Virtual Production via Quantum Eff. q ~ s p p b c ~ g g ~ q ~ c ~ ~ n q _ q l- Tunnel effect Luminosity Frontier Energy Frontier Diagonal terms Off-diagonal terms Higher Energy Scale Can be searched (even if LHC finds no New Physics)

50 (Luminosity Frontier)
LHC observes NP in TeV scale Complementarity of Flavor Physics (Luminosity Frontier) & Energy Frontier Identify NP type SUSY, Extra Dim. Little Higgs,..? Mechanism of Symm. Breaking CPV via NP Era of NP Exploration SU(5)+R degenerate MSSM+R degenerate SU(5)+R non-degenerate New Physics Belle II = Compass MSSM+R non-degenerate U(2)FS Higgs Standard Model top Energy Frontier Luminosity Frontier W, Z Map S.Nishida

51 Search by Flavor Physics in Dark
In case of No New Physics in TeV scale FCNC process currently gives various limits on NP ⇒ further explore NP Search by Flavor Physics in Dark SU(5)+R degenerate MSSM+R degenerate SU(5)+R non-degenerate New Physics Belle II = Compass MSSM+R non-degenerate U(2)FS Higgs Standard Model top Energy Frontier Luminosity Frontier W, Z Map S.Nishida

52 Comparison with LHCb Sta Complementary !

53 Summary SuperB-factory Discovery of CPV in B decays
Step1 2001 summer ! Discovery of CPV in B decays 2008 Step2 Precise test of KM and SM Step3 Search for NP Hints of NP Establish procedures (SUSY, Extra-dim…) LHC: New particle, masses SuperKEKB: couplings Understand NP need Both SuperB-factory ~50 ab-1 data (L ~1036cm-2s-1 )

54 Discovery of New Resonances
“Exotic Hadrons” X(3915), Y(4350) Charged Yb Z(4050),Z(4250) Y(4660) Y(4008) Z(4430) d c u u c Integrated Luminosity DsJ(2860) DsJ(2700) Xcx(3090) Y(4320) Tetraquark cluster cc2’ X(3940), Y(3940) Neutral c g Y(4260) u c Sc* baryon triplet X(3872) Hybrid D0*0 & D1*0 DsJ(2317/2460) hc’ & e+e-cccc

55

56 SM CPV: too small CPV Phase WMAP Too Small in SM masses too small !
Why? Jarlskog Invariant in SM (need 3 generation in KM) Normalize by T ~ 100 GeV masses too small ! is common (unique) area of triangle in SM CPV Phase [W.S.Hou]

57 CPV in B0 decays (General)
Vtd Vtb Vcd Vcb Vud Vub * B0 Dt made by H. Miyake = S sin(DmDt) + A cos (DmDt) A CP Mixing induced CPV Direct CPV A B0 fcp = fcp B0 mixing - B0 q/p A B0

58 f1 Measurement J/y B0 B0 K0 2(a) 3(g) 1(b) _ _ * Vud Vub Vtd Vtb
c s w B0 J/y K0 _ t d b w B0 V*cb V*td V*td 1(b) 2(a) 3(g) Vtd Vtb Vcd Vcb Vud Vub * = - xcpsin2f1 sin(DmDt) +A cos (DmDt) A CP Mixing induced CPV Direct CPV xCP : CP eigenvalue 0 First observed CPV in B (2001)

59 A(K0p0) measurement BKS 0 Signal +1st BKL 0 Signal
2855257 (3.7σ incl. systematics) These modes will be very difficult at a hadron machine 3-d fit gives a signal of 65737 events Use flavor tagging to distinguish B0 and anti-B^0

60 B->ν : Tension measurements Indirect fit prediction sin2f1

61 and more…


Download ppt "Physics Results of Belle and Prospects for Belle II"

Similar presentations


Ads by Google