Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)

Similar presentations


Presentation on theme: "Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)"— Presentation transcript:

1 sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)

2 Introduction _ d b _ c c s d _ w B0B0 J/  K0K0 d b _ _ s s s d _ gt B0B0 K0K0 ,  ’... w Extra CPV phase from New Physics Time-Dependent CP asymmetry in B 0 decays

3 SM Contamination     +1KsKsKs    11  Ks      P’      T      P      T’    Ks   Ks  f 0 Ks   Ks ~+1 K + K   Ks  CP mode T’P 2 P’ 2 T 4 4 Tree (V ub ) contamination Long distance effect Need to know the size to claim NP u-quark penguin ~V ub * V us  Positive  sin2  1

4 Three theoretically-clean modes Theoretical estimates of  sin2  1 /  Short distance effect QCDF: Beneke, PLB 620, 143 (2005) Cheng, Chua, Yang, PRD 73, 014017 (2006) pQCD: Mishima, Sanda, PRD 72, 114005 (2005) SCET: Williamson, Zupan, PRD 74, 014003 (2006) Long distance effect (is small) Cheng, Chua, Soni, PRD 72, 014006 (2005)    sin2  1 /  QCDF Reviewed in hep-ph/0605301 (talk by Chua in FPCP06) Lazzaro’s talk at ICHEP06

5 Status before summer

6 BelleBaBar K0K0   K  K   K S    K S  K L  K S  Time-dependent Dalitz analysis K + K  K S  K + K  K S 00 K + K  K L   K  K   K S    K  K   K L f0K0f0K0 f 0        K S  KKK0KKK0 K  K   excl.  K S  ’K0’K0  ’(   K S   ’(         K S   ’(   3       K S   ’(   K S   ’(         K S   ’(   3       K S   ’(   K L  ’(         K L  ’(   3       K L 3K S K S  K S  K S  K S  K S  K S  KS0KS0 K S    KSKS          K S  Reconstruction modes K S   K S      K S   K S     

7 BelleBaBar K0K0   K  K   K S    K S  K L  K S  Time-dependent Dalitz analysis K + K  K S  K + K  K S 00 K + K  K L   K  K   K S    K  K   K L f0K0f0K0 f 0        K S  KKK0KKK0 K  K   excl.  K S  ’K0’K0  ’(   K S   ’(         K S   ’(   3       K S   ’(   K S   ’(         K S   ’(   3       K S   ’(   K L  ’(         K L  ’(   3       K L 3K S K S  K S  K S  K S  K S  K S  KS0KS0 K S    KSKS          K S  Reconstruction modes K S   K S      K S   K S     

8 1516  65 K  K  K 0  signal 1516  65 K  K  K 0  signal Obtain CP parameters for 2-body and 3-body modes simultaneously hep-ex/0607112 B  K  K  K 0 Time-dependent Dalitz K + K  K S  K + K  K S 00 K + K  K L Intermediate resonances (  (1020)K 0, f 0 (980)K 0, X 0 (1550)K 0,  c0 K 0, D  K , D s  K  ) and NR

9  K 0 : sin2  eff = +0.12  0.31(stat)  0.10 (syst)  measurement (not sin2  ) exclude at 4.6  Fit to low K  K  mass region (<1.1GeV) First in f 0  K  K  hep-ex/0607112 Cf. BaBar 2005

10 B0  K0B0  K0 B 0 mass B 0 momentum (bkg subtracted)   K  K , K S        K  K , K S        K S K L, K S      114  17  K L signal 114  17  K L signal 246  18 40  9 22  7 307  21  K S signal 246  18 40  9 22  7 307  21  K S signal New mode hep-ex/0608039 KKKK

11 TCPV in B 0   K 0 “sin2  1 ” =  0.50  0.21(stat)  0.06(syst) A =  0.07  0.15(stat)  0.05(syst) “sin2  1 ” =  0.50  0.21(stat)  0.06(syst) A =  0.07  0.15(stat)  0.05(syst)   K S and  K L combined  background subtracted  good tags   t  –  t for  K L  t distribution and asymmetry Consistent with the SM (~1  lower) Consistent with Belle 2005 (Belle2005: “sin2  1 ” = +0.44  Consistent with the SM (~1  lower) Consistent with Belle 2005 (Belle2005: “sin2  1 ” = +0.44  unbinned fit SM hep-ex/0608039

12 TCPV in B 0  f 0 K S “sin2  1 ” =   0.23(stat)  0.11(syst) A =   0.15(stat)  0.07(syst) “sin2  1 ” =   0.23(stat)  0.11(syst) A =   0.15(stat)  0.07(syst) 377  25 f 0 K S signal Raw  symmetry B 0 mass good tags     mass hep-ex/0609006 f0f0

13 TCPV in B 0  K  K  K S 840  34     K S signal 840  34     K S signal Raw  symmetry B 0 mass good tags “sin2  1 ” =   0.15(stat)  0.03(syst) (CP-even) A =   0.10(stat)  0.05(syst) “sin2  1 ” =   0.15(stat)  0.03(syst) (CP-even) A =   0.10(stat)  0.05(syst) +0.21  0.13 hep-ex/0609006 mixture of CP even and odd states (2005)

14 BelleBaBar K0K0   K  K   K S    K S  K L  K S  Time-dependent Dalitz analysis K + K  K S  K + K  K S 00 K + K  K L   K  K   K S    K  K   K L f0K0f0K0 f 0        K S  KKK0KKK0 K  K   excl.  K S  ’K0’K0  ’(   K S   ’(         K S   ’(   3       K S   ’(   K S   ’(         K S   ’(   3       K S   ’(   K L  ’(         K L  ’(   3       K L 3K S K S  K S  K S  K S  K S  K S  KS0KS0 K S    KSKS          K S  Reconstruction modes K S   K S      K S   K S     

15 B0  'K0B0  'K0 (bkg subtracted) B 0 mass B 0 momentum hep-ex/0608039  ’   Ks(     )794  36   (2  )  Ks(     )363  21   (3  )  Ks(     )100  11   Ks(     )103  15    (  )  Ks(     ) 62  9 Total1421  46  ’   (  )  K L 392  37   (  )  K L 62  13 Total 454  39

16 TCPV in B 0   'K 0 “sin2  1 ” =  0.64  0.10(stat)  0.04(syst) A =  0.01  0.07(stat)  0.05(syst) “sin2  1 ” =  0.64  0.10(stat)  0.04(syst) A =  0.01  0.07(stat)  0.05(syst) Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2  1 ” = +0.62  First observation of TCPV (5.6  in a single b  s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2  1 ” = +0.62  First observation of TCPV (5.6  in a single b  s mode  t distribution and asymmetry   'K S and  'K L combined  background subtracted  good tags   t  –  t for  'K L hep-ex/0608039

17 B0  'K0B0  'K0 hep-ex/0607100 936  41  'K S signal 936  41  'K S signal 168  21  'K L signal 168  21  'K L signal

18 TCPV in B 0   'K 0 Cf. BaBar 2005: “sin2  ” = +0.36  0.13  0.03 “sin2  ” =  0.55  0.11(stat)  0.02(syst) A =  0.15  0.07(stat)  0.03(syst) “sin2  ” =  0.55  0.11(stat)  0.02(syst) A =  0.15  0.07(stat)  0.03(syst) “sin2  ” 4.9  from zero. hep-ex/0607100

19 BelleBaBar K0K0   K  K   K S    K S  K L  K S  Time-dependent Dalitz analysis K + K  K S  K + K  K S 00 K + K  K L   K  K   K S    K  K   K L f0K0f0K0 f 0        K S  KKK0KKK0 K  K   excl.  K S  ’K0’K0  ’(   K S   ’(         K S   ’(   3       K S   ’(   K S   ’(         K S   ’(   3       K S   ’(   K L  ’(         K L  ’(   3       K L 3K S K S  K S  K S  K S  K S  K S  KS0KS0 K S    KSKS          K S  Reconstruction modes K S   K S      K S   K S     

20 Vertex Reconstruction with K S good tag     Ks track IP profile B CP vertex J/  K S with the K S Vertexing Raw asymmetry Extrapolate K S track to the Interaction Point Vertex reconstruction efficiency with a single K S : 30 to 45% (Belle), 60% (BaBar K S   ) Events without the vertex can still be used for A-term measurement. Validity confirmed with J/  K S as a control sample.

21 TCPV in B 0  K S K S K S “sin2  1 ” =  0.30  0.32(stat)  0.08(syst) A =  0.31  0.20(stat)  0.07(syst) “sin2  1 ” =  0.30  0.32(stat)  0.08(syst) A =  0.31  0.20(stat)  0.07(syst) B 0 mass  t distribution and asymmetry  background subtracted  good tags hep-ex/0608039 157  14K S  K S  K S  28  9K S  K S  K S 00 185  17 total 157  14K S  K S  K S  28  9K S  K S  K S 00 185  17 total

22 116  12K S  K S  K S  60  12K S  K S  K S 00 176  17 total 116  12K S  K S  K S  60  12K S  K S  K S 00 176  17 total m B & m miss instead of m ES &  E “sin2  ” =  0.66  0.26(stat)  0.08(syst) A =  0.14  0.22(stat)  0.05(syst) “sin2  ” =  0.66  0.26(stat)  0.08(syst) A =  0.14  0.22(stat)  0.05(syst) TCPV in B 0  K S K S K S  t distribution and asymmetry hep-ex/0607108

23 TCPV in B 0     K S “sin2  ” =  0.33  0.26(stat)  0.04(syst) A =  0.20  0.16(stat)  0.03(syst) “sin2  ” =  0.33  0.26(stat)  0.04(syst) A =  0.20  0.16(stat)  0.03(syst) 425  28   0 K S signal 425  28   0 K S signal hep-ex/0607096 missing mass & m B

24 TCPV in B 0     K S “sin2  1 ” =   0.35(stat)  0.08(syst) A =   0.14(stat)  0.05(syst) “sin2  1 ” =   0.35(stat)  0.08(syst) A =   0.14(stat)  0.05(syst) 515  32   0 K S signal 515  32   0 K S signal Raw  symmetry B 0 mass good tags hep-ex/0609006

25 TCPV in B 0   K S “sin2  1 ” =   0.46(stat)  0.07(syst) A =   0.29(stat)  0.06(syst) “sin2  1 ” =   0.46(stat)  0.07(syst) A =   0.29(stat)  0.06(syst) 118  18  K S signal 118  18  K S signal B 0 mass Raw  symmetry good tags hep-ex/0609006

26 TCPV in B 0   K S “sin2  ” =  0.62 (stat)  0.02(syst) A =  0.43 (stat)  0.03(syst) “sin2  ” =  0.62 (stat)  0.02(syst) A =  0.43 (stat)  0.03(syst) +0.23  0.25 +0.25  0.30 142  17  K S signal hep-ex/0607101

27 Summary Smaller than b  ccs in all of 9 modes Smaller than b  ccs in all of 9 modes Theory tends to predict SM contamination in positive side Naïve average of all b  s modes sin2  eff = 0.52 ± 0.05 2.6  deviation Naïve average of all b  s modes sin2  eff = 0.52 ± 0.05 2.6  deviation More statistics crucial for mode-by-mode studies

28 NP contribution to penguin diagram bRbR ~ _ __ d b s s s d _ g sRsR ~ _ g ~

29

30

31 Experimental Tools Event Shape (Jet-like) (Spherical) Bkg signal Likelihood Ratio Likelihood Ratio of signal event (event shape variables) Kinematic variables (M bc /m ES,  E) signal

32 Belle signal yield extraction J/  K  J/  K S  EE M bc J/  K L pB*pB* KK  (K  K  )K S  EE M bc R s/b  (K S  K L )K S  M bc R s/b  K S  EE M bc R s/b KLKL pB*pB* ’K’K  ’ K S  EE M bc R s/b  ’ K S  EE M bc R s/b ’KL’KL pB*pB* 3K  K S  K S  K S  EE M bc R s/b K S  K S  K S  EE M bc R s/b

33 Sources of  S: Three basic sources of  S: V tb V* ts = -V cb V* cs -V ub V* us =-A 2 +A(1-  ) 4 - i  A 4 +O( 6 ) (also applies to pure penguin modes) u-penguin (radiative correction): V ub V* us (also applies to pure penguin modes) color-suppressed tree Other sources? LD u-penguin, CA tree? Chua FPCP06

34 FSI effects in mixing induced CP violation of penguin modes are small The reason for the smallness of the deviations: The dominant FSI contributions are of charming penguin like. Do not bring in any additional weak phase. The source amplitudes (K * ,K  ) are small (Br~10 -6 ) compare with Ds*D (Br~10 -2,-3 ) The sources with the additional weak phase are even smaller (tree small, penguin dominate) If we somehow enhance K * ,K  contributions ⇒ large direct CP violation (A  Ks ). Not supported by data Chua FPCP06


Download ppt "Sin2  1 /sin2  via penguin processes Beauty 2006 Sep.25-29, Univ. of Oxford Yutaka Ushiroda (KEK)"

Similar presentations


Ads by Google