Presentation is loading. Please wait.

Presentation is loading. Please wait.

V B-factory constraints on possible New Physics at the LHC S.L. Olsen U of Hawai’i 高能所 北京 Academia Sinica (Taipei) June 12, 2007.

Similar presentations


Presentation on theme: "V B-factory constraints on possible New Physics at the LHC S.L. Olsen U of Hawai’i 高能所 北京 Academia Sinica (Taipei) June 12, 2007."— Presentation transcript:

1 v B-factory constraints on possible New Physics at the LHC S.L. Olsen U of Hawai’i 高能所 北京 Academia Sinica (Taipei) June 12, 2007

2 Outline Implications of recent D 0 -D 0 mixing results CPV measurements with Penguins Charged Higgs limits Light dark matter searches

3 SUSY & D 0 -D 0 mixing

4 SUSY “Flavor Problem” K 0 -K 0 mixing SM: NP (MSSM): QCD-vertices EW-vertices 6x6 matrix 2 nd order EW: Δm  3 x 10 -12 MeV Potentially huge: effects  not seen

5 How to make Δm small? PLB 309, 337 (1993)

6 Quark-Squark “Alignment” Invoke a horizontal symmetry that results in small values for the down-type squark mixing This fixes up-type squark mixing elements  cos  C (~0.2) Expect large effects in D 0 -D 0 mixing e.g. Δm ~ 6x10 -11 MeV Nir & Raz PRD 66, 035007 (2002)

7 Neutral D meson phenomenology SM: CPV is very small: q ≈ p ≈1/  2

8

9 Recent D 0 -D 0 mixing results (I) D* +   + D 0  D 0  K +  - pion charge tags the D 0 flavor DCS decays “Wrong sign” (WS) decays

10 Use t-dependence to separate WS from DCS decays

11 mixing evidence from WS decays BaBar excludes no-mixing at 3.9s strong phase

12 D 0 = (1/  2 ) (D 1 + D 2 ) KK D 2 -D 1 lifetime diff: KK KK  KK,  Lifetime measured w D 0  K  decays = /2 “ “ w D 0  KK &  decays =  1 x Recent D 0 -D 0 mixing results (II)

13 Belle measurement of y cp hep-ex/0703036 accepted by PRL For CPV = 0: y CP = y

14

15 Recent D 0 -D 0 mixing results III D* +   + D 0  D 0 pion charge tags D 0 flavor @ t=0 Dalitz analysis of D 0  K S     decays KSKS t-dependent interference D 0 decay

16 Dalitz analysis of D 0  K S     D 0  K* -   D 0  K* +   + K* + /K* -

17 Results 95% CL contour x = (0.80  0.29  0.17) % y = (0.33  0.24  0.15)%  = (410.3  0.3) fs HFAG Y CP (0,0) excluded at 2.7  level

18 Comments alà Y. Nir hep-ph/0703235v2 D 0 -D 0 mixing probably observed in ΔΓ –y = (Γ 1 -Γ 2 )/2  Γ = (1.4 ± 0.4) x 10 -2 Mass difference still not seen –x < 0.015 @ 95% CL – Δm < 1.2 x 10 -11 MeV (CP conserved) – Δm < 2.2 x 10 -11 MeV (CP violated) –~factor of 3 below m≈1TeV q/g expectation ~ ~ ~ ~

19 How to make  m small?

20 Making ΔM small in the MSSM fine-tune the squark mixing terms –SUSY is supposed to save us from fine-tuning make the squark masses degenerate  GIM –unlike ordinary quarks: m t /m u ~ 10 5 raise the SUSY mass scale (  ~few TeV) –not much fun for LHC experimenters

21 CPV

22 CPV in the SM complex terms in the CKM quark-flavor mixing matrix Wolfenstein b  u (  3 ) t  d (  1 )

23 B0B0 B0B0 B0B0 V cb V tb V* V tb J/  KSKS KSKS sin2  1 from B  f CP + B  B  f CP interf.  V* 2  sin2  1 td  Sanda, Bigi & Carter: no CP phase

24 What do we measure? t   z/cβγ Flavor-tag decay (B 0 or B 0 ?) J/  KSKS B - B B + B ee ee more B tags zz t=0 f CP (tags) sin2  1 This is for CP=-1; for CP=+1, the asymmetry is opposite Asymmetric energies

25 Results (2006) Belle BaBar

26 LP2001 Rome sin2  1 (  ) history

27 CKM with (mostly) trees SM+CKM is “correct” at tree level CKM Global Fit (Sep.2006)

28 Next Step Check the Unitary Triangle with Penguins b  s FCNC decay

29 SM FCNC:NP: i.e. > 0.1 for M NP accessible @ LHC ~ ~s ~ x b g t c ~ x t -- ~ ~ 2 nd -order Weak process QCD-verticesEW-vertices at least V 2 nd -order QCD process huge effects are possible (but not seen) This mixing matrix is 6x6 (lots of CP phases)

30 sin2  1 with b  s penguins (SM) Example: no CP phase SM: sin2  1 = sin2  1 from B  J/  K S (b  c c s) eff V td + 11 B B,  ’,     11 _ * *

31 B0  'K0B0  'K0 (bkg subtracted) B 0 mass B 0 momentum hep-ex/0608039  ’   Ks(     )794  36   (2  )  Ks(     )363  21   (3  )  Ks(     )100  11   Ks(     )103  15    (  )  Ks(     ) 62  9 Total1421  46  ’   (  )  K L 392  37   (  )  K L 62  13 Total 454  39 K0KSK0KS K0KLK0KL

32 TCPV in B 0   'K 0 “sin2  1 ” =  0.64  0.10(stat)  0.04(syst) A =  0.01  0.07(stat)  0.05(syst) “sin2  1 ” =  0.64  0.10(stat)  0.04(syst) A =  0.01  0.07(stat)  0.05(syst) Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2  1 ” = +0.62  First observation of TCPV (5.6  in a single b  s mode Consistent with the SM Consistent with Belle 2005 (Belle 2005: “sin2  1 ” = +0.62  First observation of TCPV (5.6  in a single b  s mode  t distribution and asymmetry   'K S and  'K L combined  background subtracted  good tags   t  –  t for  'K L hep-ex/0608039

33 B0  K0B0  K0 B 0 mass B 0 momentum (bkg subtracted)   K  K , K S        K  K , K S        K S K L, K S      114  17  K L signal 114  17  K L signal 246  18 40  9 22  7 307  21  K S signal 246  18 40  9 22  7 307  21  K S signal hep-ex/0608039 KKKK K0KSK0KS K0KLK0KL

34 TCPV in B 0   K 0 “sin2  1 ” =  0.50  0.21(stat)  0.06(syst) A =  0.07  0.15(stat)  0.05(syst) “sin2  1 ” =  0.50  0.21(stat)  0.06(syst) A =  0.07  0.15(stat)  0.05(syst)   K S and  K L combined  background subtracted  good tags   t  –  t for  K L  t distribution and asymmetry Consistent with the SM (~1  lower) Consistent with Belle 2005 (Belle2005: “sin2  1 ” = +0.44  Consistent with the SM (~1  lower) Consistent with Belle 2005 (Belle2005: “sin2  1 ” = +0.44  unbinned fit SM hep-ex/0608039

35 2006:  1 with b  s Penguins Smaller than b  ccs in all of 9 modes Smaller than b  ccs in all of 9 modes Theory tends to predict positive shifts (originating from phase in Vts) Naïve average of all b  s modes sin2  eff = 0.52 ± 0.05 2.6  deviation between penguin and tree (b  s) (b  c) Naïve average of all b  s modes sin2  eff = 0.52 ± 0.05 2.6  deviation between penguin and tree (b  s) (b  c)

36 History of sin2  1 sin2  1 from b  ccs decays (2007) 20022003200420052006 2.6  3.1  3.9  2.8  2.6   0.15 eff sin2  1 (b  qqs decays) (Belle&BaBar average)

37 ~s ~ x How to make Δsin2  1 small? Tune the squark mixing terms is there enough freedom to do this? Make the squark masses degenerate invoke a GIM-like mechanism Make the SUSY mass scale very high (~few TeV) not much fun for LHC experimenters b g ~ eff

38 Charged Higgs limits from B  

39 B  B   Decays w/ “Missing E(>1 )” B decay constant  Lattice QCD SM : BSM : sensitive to New Physics from H 

40 B   (nearly invisible decays) N= 680k eff.= 0.29% purity = 57% N= 680k eff.= 0.29% purity = 57% Charged B Tag-side: Full reconstruction 449M BB Υ(4S) e  (8GeV) e+(3.5GeV) B B   signal 4-momentum determined  B meson beam ! 4-momentum determined  B meson beam !

41 Missing momentum Missing momentum B   candidate event

42 B   results Hadronic tags e              First evidence, 3.5  Belle PRL97, 251802 (2006).

43 BaBar results on B   D l  tags hadron tags BaBar combined result: hep-ex/0608019 Gritsan@FPCP07

44 Belle measures: Branching fraction Product of B meson decay constant ƒ B and CKM element |V ub | Compare with Babar preliminary

45 Constraints on H  mass r H =1.13  0.51 Use known f B and |V ub | Ratio to the SM BF. excluded

46 Radiative Penguins b  s  b  s l + l -

47 New Physics? b  s  b  s l + l - H-H- t -- ~ ~ t -- ~ ~

48 Wilson Coefficients

49 Nakao

50 NNLO calculation  (298  26) x 10 -6 M. Misiak et al, hep- ph/0609232, PRL 98,022002(2007) Theory News NNLO theory

51 Error on BF Central value of BF 95% CL lower limit on H + mass from exp and NNLO M. Misiak et al, hep-ph/0609232, PRL 98,022002 (2007) BaBar/Belle/CLEO avg M(H + )>295 GeV 300 GeV

52 Charged Higgs limits from B  X s 

53 Combined limits

54 Determine |C 7 | from B  X s  R 7 =C 7 /C 7 SM R 8 =C 8 /C 8 SM 90%CL SM NP SUSY MFV A.Ali et al. Phys.Rev. D66 (2002) 034002

55 Get sign of C7 from B  K* l + l - 357/fb data –  386x10 6 BB pairs Electron or muon pair –Charmonium veto K*(K +  -, Ks  +, K +  0 ) |M K  – M K* | < 75MeV B meson reconstruction Background suppression Signal yield –K*ll 114  13, purity 44% Null test sample –K + ll 96  12, purity 57% –K + ll has no asymmetry.

56 Forward-Backward Asymm: A FB B K*K* ll ll  B K*K* ll ll  Forward event Backward event

57 Fit results for A 7 /A 9 & A 7 /A 10 Null test with K + ll Integrated A FB in K*ll SM J/ ’’ Fit to K*ll

58 SM wins again Best fit SM SM A 9 /A 7 A 10 /A 7 fit result A7A10 sign flipped (to SM) A 9 A 10 sign flipped Both A 7 A 10 and A 9 A 10 signs flipped

59 Search for “light” dark matter

60 Dark matter coupled to qq? for m  <m b

61 Belle’s search strategy Signature: only     in detector & M recoil (     )=m  (1s)

62 Summary Any “new physics” that is seen at the LHC is very carefully hidden from the Flavor Sector

63 Backup Slides

64 Parameters are already constrained by KK & DD mixing Same diagrams contribute SM: X W + W - c d, s u NP: X g(  + ) g(  - ) c c (s) u (d) u x ~~ ~~ K & D mixing are consistent with 2 nd order SM EW ~~ ~~

65 Validate the E ECL simulation using double-tagged events (with on the signal side) Signal reconstruction (purity ~ 90%) Extra Calorimeter Energy MC: B + B – : 494 ± 18 B 0 B 0 : 8 ± 2 Combined: 502 ±18 Data: 458 _

66 SMNP? i.e. > 0.1 for M NP accessible @ LHC ~ ~s ~ x b g ~ t


Download ppt "V B-factory constraints on possible New Physics at the LHC S.L. Olsen U of Hawai’i 高能所 北京 Academia Sinica (Taipei) June 12, 2007."

Similar presentations


Ads by Google