Presentation is loading. Please wait.

Presentation is loading. Please wait.

Direct Numerical Simulation of Particle Settling in Model Estuaries R. Henniger (1), L. Kleiser (1), E. Meiburg (2) (1) Institute of Fluid Dynamics, ETH.

Similar presentations


Presentation on theme: "Direct Numerical Simulation of Particle Settling in Model Estuaries R. Henniger (1), L. Kleiser (1), E. Meiburg (2) (1) Institute of Fluid Dynamics, ETH."— Presentation transcript:

1 Direct Numerical Simulation of Particle Settling in Model Estuaries R. Henniger (1), L. Kleiser (1), E. Meiburg (2) (1) Institute of Fluid Dynamics, ETH Zurich (2) Department of Mechanical Engineering, UCSB TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAA

2 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Outline  Introduction / motivation  Computational setup  flow configuration  governing equations and physical parameters  simulation code  Results  freshwater / saltwater mixing  particle settling  Conclusions and outlook 2

3 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg  Estuary mouth  light fresh-water  heavy salt-water  Suspended particles  e.g. sediment or pollutants  transport out to the ocean  particles settle and deposit  Other influences  temperature profile  Coriolis effect, tide, …  Focus of the present study: basic investigation of  freshwater / saltwater mixing  particle transport, particle settling and particle deposition Introduction 3 Magdalena River (Colombia)

4 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Freshwater / saltwater mixing  Typically hypopycnal inflow  (Super-)critical?  Convective mixing, enhanced by  turbulence in river  Kelvin-Helmholtz or Holmboe waves 4 salty freshwater salt wedge salty

5 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle load  hypopycnal:  hyperpycnal: 5 salty freshwater + particles

6 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle transport (1) Surface plume (2) (Enhanced) particle settling  flocculation?  turbulence enhanced settling? (3) Bottom propagating turbidity current (1) (2) (3) 6

7 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Example: Yellow River (from http://www.grid.unep.ch/activities/global_change/atlas/images/YellowRiver.jpg) 7

8 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Motivation  Particle transport mechanisms  surface freshwater current  particle settling  undersea gravity currents  Consequences  spillage of ocean bed / continental shelf  environmental pollution  disruption of infrastructure  State of research  many quantitative field observations  few laboratory experiments  little evidence about mechanisms  Focus of the present study: basic investigation of  freshwater / saltwater mixing  particle transport, particle settling and particle deposition 8

9 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Model estuary configuration symmetry planes inflow convective outflow salt sponge 9

10 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Governing equations, non-dimensional  Incompressible Navier-Stokes and concentration transport equations (in Boussinesq regime)  Reynolds number:  Schmidt number:  Richardson number:  Particle settling velocity: 10

11 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Physical parameters realitylaboratorysimulation Re 10 5 -10 7 10 3 -10 4 1500 Sc sal 500-3000 1 Sc part > Sc sal 2 Ri sal 0.5-1 0.5 Ri part < 0.05 0.05 -u s / U < 10 -2 0.01-0.02  particle plume extent extent  turbulence turbulence  “sharpness” of interfaces interfaces 11  particle load loading  sub-/supercritical flow inertial forces

12 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Newly developed simulation code (summary)  Incompressible flows + active scalars  Discretization  compact finite differences in space  explicit or semi-implicit time integration  Massively parallel platform  3D domain decomposition (>95% parallel efficiency)  sustained 16% peak performance on Cray XT  scalability tested to up to 8000 cores and 17 billion grid points  Validation  convergence orders in time and space  convergence properties of iterative solvers  temporal and spatial growth of eigenmodes -channel flow -shear layer flows with passive scalar  transitional and turbulent channel flow (vs. P. Schlatter)  particle-driven gravity current (vs. F. Necker)  parallel scaling properties 12

13 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Results: freshwater / saltwater mixing 13

14 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Freshwater current salt sponge internal waves Kelvin-Helmholtz waves 14 c sal = 0.75

15 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Group velocity of internal waves (measured with potential energy at y = 0 ) 15

16 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Streamlines on water surface 16

17 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Sub-/supercritical flow  kinetic vs. buoyant forces  measured with bulk Richardson number 17

18 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Interface stability  shear stress vs. density difference  measured with gradient Richardson number 18

19 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Results: particle settling 19

20 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle settling  Three different settling velocities u s / U = -0.02, -0.015, -0.01  Qualitative agreement with laboratory experiments?  Maxworthy (JFM, 1999)  Parsons et al. (Sedimentology, 2001)  McCool & Parsons (Cont. Shelf Res., 2004)  Open questions  extent of particle plume?  particle settling modes (transient, steady state)?  effective settling velocity?  deposit profile? 20

21 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle plume t = 300 t = 400 t = 450 t = 600 u s / U = -0.02, c part = 0.1 21 x1x1 x1x1 x1x1 x1x1 x2x2 x2x2

22 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Convective particle settling t = 300 t = 350 t = 400 t = 600 u s / U = -0.02 22 x 1 = 26 x 2 = 5 x1x1 x1x1 x1x1 x1x1 x2x2 x2x2 x2x2 x2x2 x3x3 x3x3 x3x3 x3x3

23 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle mass 23

24 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Potential energy of particles 24

25 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Effective particle settling velocity 25

26 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle Deposit u s /U = -0.020, t = 710 26

27 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle Deposit u s /U = -0.015, t = 920 27

28 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Particle Deposit u s /U = -0.010, t = 1040 28

29 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Conclusions  Definition of simulation setup  parameters  inflow  boundary conditions  sponge zones, etc.  Results: Basic effects compare well with laboratory experiments  freshwater-brine mixing  finger convection  enhanced convective particle settling  Results obtained at moderate Re and Sc, accessible to DNS 29

30 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Outlook  Further increase of Re and Sc with LES in the future  Implemented LES models:  ADM-RT model (filter model)  (HPF) Smagorinsky  (upwinding)  Validation of LES to be completed  Further option: more complex domains e.g. by  orthogonal curvilinear grids  immersed boundary method  (immersed interface method) 30

31 05/05/2009 R. Henniger, L. Kleiser, E. Meiburg Appendix 31


Download ppt "Direct Numerical Simulation of Particle Settling in Model Estuaries R. Henniger (1), L. Kleiser (1), E. Meiburg (2) (1) Institute of Fluid Dynamics, ETH."

Similar presentations


Ads by Google