Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 6: Multiply, Shift, and Divide

Similar presentations


Presentation on theme: "Lecture 6: Multiply, Shift, and Divide"— Presentation transcript:

1 Lecture 6: Multiply, Shift, and Divide
Professor Mike Schulte Computer Architecture ECE 201

2 1-bit ALU for MSB (correction)
The ALU for the MSB must also detect overflow and indicate the sign of the result. 7 2 1 3

3 MIPS instructions Instruction Example Meaning Comments
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder Hi = $2 mod $3 divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi Move from Lo mflo $1 $1 = Lo Used to get copy of Lo shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend) shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

4 MULTIPLY (unsigned) Paper and pencil example (unsigned):
Multiplicand = 8 Multiplier = Product = 72 n bits x n bits = 2n bit product Binary makes it easy: 0 => place ( 0 x multiplicand) 1 => place a copy ( 1 x multiplicand) 4 versions of multiply hardware & algorithm: successive refinement

5 Unsigned Combinational Multiplier
Stage i accumulates A * 2 i if Bi == 1 Q: How much hardware for 32 bit multiplier?

6 How does it work? at each stage shift A left ( x 2)
A0 A1 A2 A3 B0 A0 A1 A2 A3 B1 A0 A1 A2 A3 B2 A0 A1 A2 A3 B3 P7 P6 P5 P4 P3 P2 P1 P0 at each stage shift A left ( x 2) use next bit of B to determine whether to add in shifted multiplicand accumulate 2n bit partial product at each stage

7 Unisigned shift-add multiplier (version 1)
64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg, 32-bit multiplier reg Shift Left Multiplicand 64 bits Multiplier Shift Right 64-bit ALU 32 bits Write Product Control 64 bits Multiplier = datapath + control

8 Multiply Algorithm Version 1
Start Multiplier0 = 1 1. Test Multiplier0 Multiplier0 = 0 1a. Add multiplicand to product & place the result in Product register M’ier: 0011 M’and: P: 1a. 1=>P=P+Mcand M’ier: 0011 Mcand: P: 2. Shl Mcand M’ier: 0011 Mcand: P: 3. Shr M’ier M’ier: 0001 Mcand: P: 1a. 1=>P=P+Mcand M’ier: 0001 Mcand: P: 2. Shl Mcand M’ier: 0001 Mcand: P: 3. Shr M’ier M’ier: 0000 Mcand: P: 1. 0=>nop M’ier: 0000 Mcand: P: 2. Shl Mcand M’ier: 0000 Mcand: P: 3. Shr M’ier M’ier: 0000 Mcand: P: 1. 0=>nop M’ier: 0000 Mcand: P: 2. Shl Mcand M’ier: 0000 Mcand: P: 3. Shr M’ier M’ier: 0000 Mcand: P: Product Multiplier Multiplicand 2. Shift the Multiplicand register left 1 bit. 3. Shift the Multiplier register right 1 bit. nth repetition? No: < n repetitions Yes: n repetitions Done

9 Observations on Multiply Version 1
1 clock per cycle =>  100 clocks per multiply 1/2 bits in multiplicand always 0 => 64-bit adder is wasted 0’s inserted in left of multiplicand as shifted => least significant bits of product never changed once formed Instead of shifting multiplicand to left, shift product to right.

10 MULTIPLY HARDWARE Version 2
32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, 32-bit Multiplier reg Multiplicand 32 bits Multiplier Shift Right 32-bit ALU 32 bits Shift Right Product Control 64 bits Write

11 Multiply Algorithm Version 2
3. Shift the Multiplier register right 1 bit. Done Yes: n repetitions 2. Shift the Product register right 1 bit. No: < n repetitions 1. Test Multiplier0 Multiplier0 = 0 Multiplier0 = 1 1a. Add multiplicand to the left half of product & place the result in the left half of Product register nth repetition? Start Multiply Algorithm Version 2 Product Multiplier Multiplicand 1: 2: 3: 1: 2: 3: 1: 2: 3: 1: 2: 3: M’ier: 0011 Mcand: 0010 P: 1a. 1=>P=P+Mcand M’ier: 0011 Mcand: 0010 P: 2. Shr P M’ier: 0011 Mcand: 0010 P: 3. Shr M’ier M’ier: 0001 Mcand: 0010 P: 1a. 1=>P=P+Mcand M’ier: 0001 Mcand: 0010 P: 2. Shr P M’ier: 0001 Mcand: 0010 P: 3. Shr M’ier M’ier: 0000 Mcand: 0010 P: 1. 0=>nop M’ier: 0000 Mcand: 0010 P: 2. Shr P M’ier: 0000 Mcand: 0010 P: 3. Shr M’ier M’ier: 0000 Mcand: 0010 P: 1. 0=>nop M’ier: 0000 Mcand: 0010 P: 2. Shr P M’ier: 0000 Mcand: 0010 P: 3. Shr M’ier M’ier: 0000 Mcand: 0010 P:

12 Still more wasted space!
3. Shift the Multiplier register right 1 bit. Done Yes: n repetitions 2. Shift the Product register right 1 bit. No: < n repetitions 1. Test Multiplier0 Multiplier0 = 0 Multiplier0 = 1 1a. Add multiplicand to the left half of product & place the result in the left half of Product register nth repetition? Start Still more wasted space! Product Multiplier Multiplicand 1: 2: 3: 1: 2: 3: 1: 2: 3: 1: 2: 3: M’ier: 0011 Mcand: 0010 P: 1a. 1=>P=P+Mcand M’ier: 0011 Mcand: 0010 P: 2. Shr P M’ier: 0011 Mcand: 0010 P: 3. Shr M’ier M’ier: 0001 Mcand: 0010 P: 1a. 1=>P=P+Mcand M’ier: 0001 Mcand: 0010 P: 2. Shr P M’ier: 0001 Mcand: 0010 P: 3. Shr M’ier M’ier: 0000 Mcand: 0010 P: 1. 0=>nop M’ier: 0000 Mcand: 0010 P: 2. Shr P M’ier: 0000 Mcand: 0010 P: 3. Shr M’ier M’ier: 0000 Mcand: 0010 P: 1. 0=>nop M’ier: 0000 Mcand: 0010 P: 2. Shr P M’ier: 0000 Mcand: 0010 P: 3. Shr M’ier M’ier: 0000 Mcand: 0010 P:

13 Observations on Multiply Version 2
Product register wastes space that exactly matches size of multiplier Both Multiplier register and Product register require right shift Combine Multiplier register and Product register

14 MULTIPLY HARDWARE Version 3
32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, (0-bit Multiplier reg) Multiplicand 32 bits 32-bit ALU Shift Right Product (Multiplier) Control 64 bits Write

15 Multiply Algorithm Version 3
Start Multiplicand Product Product0 = 1 1. Test Product0 Product0 = 0 1a. Add multiplicand to the left half of product & place the result in the left half of Product register Mcand: 0010 P: 1a. 1=>P=P+Mcand Mcand: 0010 P: 2. Shr P Mcand: 0010 P: 1a. 1=>P=P+Mcand Mcand: 0010 P: 2. Shr P Mcand: 0010 P: 1. 0=>nop Mcand: 0010 P: 2. Shr P Mcand: 0010 P: 1. 0=>nop Mcand: 0010 P: 2. Shr P Mcand: 0010 P: 2. Shift the Product register right 1 bit. 32nd repetition? No: < 32 repetitions Yes: 32 repetitions Done

16 Observations on Multiply Version 3
2 steps per bit because Multiplier & Product combined MIPS registers Hi and Lo are left and right half of Product Gives us MIPS instruction MultU What about signed multiplication? easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps) apply definition of 2’s complement need to sign-extend partial products and subtract at the end Booth’s Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles can be modified to handle multiple bits at a time

17 Motivation for Booth’s Algorithm
Example 2 x 6 = 0010 x 0110: x shift (0 in multiplier) add (1 in multiplier) add (1 in multiplier) shift (0 in multiplier) ALU with add or subtract gets same result in more than one way: 6 = – = – For example x shift (0 in multiplier) – sub (start string of 1’s) shift (mid string of 1’s) add (end string of 1’s)

18 0 1 1 1 1 0 middle of run end of run beginning of run
Booth’s Algorithm middle of run end of run beginning of run Current Bit Bit to the Right Explanation Example Op 1 0 Begins run of 1s sub 1 1 Middle of run of 1s none 0 1 End of run of 1s add 0 0 Middle of run of 0s none Originally for Speed (when shift was faster than add) Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one –1 01111

19 Booths Example (2 x 7) Operation Multiplicand Product next?
0. initial value > sub 1a. P = P - m shift P (sign ext) 1b > nop, shift > nop, shift > add 4a shift 4b done

20 Booths Example (2 x -3) Operation Multiplicand Product next?
0. initial value > sub 1a. P = P - m shift P (sign ext) 1b > add 2a shift P 2b > sub 3a shift 3b > nop 4a shift 4b done

21 Shifters Two kinds: logical-- value shifted in is always "0" arithmetic-- on right shifts, sign extend "0" msb lsb "0" msb lsb "0" Note: these are single bit shifts. A given instruction might request 0 to 32 bits to be shifted!

22 Combinational Shifter from MUXes
Basic Building Block 1 sel 2-to-1 Mux D 8-bit right shifter 1 S2 S1 S0 A0 A1 A2 A3 A4 A5 A6 A7 R0 R1 R2 R3 R4 R5 R6 R7 What comes in the MSBs? How many levels for 32-bit shifter?

23 Unsigned Divide: Paper & Pencil
1001 Quotient Divisor Dividend – – Remainder (or Modulo result) See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or 0 * divisor Dividend = Quotient x Divisor + Remainder 3 versions of divide, successive refinement

24 DIVIDE HARDWARE Version 1
64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg, 32-bit Quotient reg Shift Right Divisor 64 bits Quotient Shift Left 64-bit ALU 32 bits Write Remainder Control 64 bits

25 Divide Algorithm Version 1
Start: Place Dividend in Remainder Divide Algorithm Version 1 Takes n+1 steps for n-bit Quotient & Rem. Remainder Quotient Divisor 1. Subtract the Divisor register from the Remainder register, and place the result in the Remainder register. Remainder  0 Test Remainder Remainder < 0 2a. Shift the Quotient register to the left setting the new rightmost bit to 1. 2b. Restore the original value by adding the Divisor register to the Remainder register, & place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0. Q: 0000 D: R: –D = 1: R = R–D Q: 0000 D: R: 2b: +D, sl Q, 0 Q: 0000 D: R: 3: Shr D Q: 0000 D: R: –D = 1: R = R–D Q: 0000 D: R: 2b: +D, sl Q, 0 Q: 0000 D: R: 3: Shr D Q: 0000 D: R: –D = 1: R = R–D Q: 0000 D: R: 2b: +D, sl Q, 0 Q: 0000 D: R: 3: Shr D Q: 0000 D: R: –D = 1: R = R–D Q: 0000 D: R: 2a: sl Q, 1 Q: 0001 D: R: 3: Shr D Q: 0000 D: R: –D = 1: R = R–D Q: 0000 D: R: 2a: sl Q, 1 Q: 0011 D: R: 3: Shr D Q: 0011 D: R: Recommend show 2’s comp of divisor, show lines for subtract divisor and restore remainder 3. Shift the Divisor register right 1 bit. n+1 repetition? No: < n+1 repetitions Yes: n+1 repetitions (n = 4 here) Done

26 Observations on Divide Version 1
1/2 bits in divisor always 0 => 1/2 of 64-bit adder is wasted => 1/2 of divisor is wasted Instead of shifting divisor to right, shift remainder to left? 1st step cannot produce a 1 in quotient bit (otherwise too big) => switch order to shift first and then subtract, can save 1 iteration

27 Divide: Paper & Pencil Quotient Divisor Dividend – – Remainder (or Modulo result) Notice that there is no way to get a 1 in leading digit! (this would be an overflow, since quotient would have n+1 bits)

28 DIVIDE HARDWARE Version 2
32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg, 32-bit Quotient reg Divisor 32 bits Quotient Shift Left 32-bit ALU 32 bits Shift Left Remainder Control 64 bits Write

29 Divide Algorithm Version 2
Start: Place Dividend in Remainder Divide Algorithm Version 2 Remainder Quotient Divisor 1. Shift the Remainder register left 1 bit. 2. Subtract the Divisor register from the left half of the Remainder register, & place the result in the left half of the Remainder register. Remainder 0 Test Remainder Remainder < 0 Q: 0000 D: 0010 R: 1: Shl R Q: 0000 D: 0010 R: 2: R = R–D Q: 0000 D: 0010 R: 3b: +D, sl Q, 0 Q: 0000 D: 0010 R: 1: Shl R Q: 0000 D: 0010 R: 2: R = R–D Q: 0000 D: 0010 R: 3b: +D, sl Q, 0 Q: 0000 D: 0010 R: 1: Shl R Q: 0000 D: 0010 R: 2: R = R–D Q: 0000 D: 0010 R: 3a: sl Q, 1 Q: 0001 D: 0010 R: 1: Shl R Q: 0000 D: 0010 R: 2: R = R–D Q: 0000 D: 0010 R: 3a: sl Q, 1 Q: D: 0010 R: 3a. Shift the Quotient register to the left setting the new rightmost bit to 1. 3b. Restore the original value by adding the Divisor register to the left half of the Remainderregister, &place the sum in the left half of the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0. nth repetition? No: < n repetitions Yes: n repetitions (n = 4 here) Done

30 Observations on Divide Version 2
Eliminate Quotient register by combining with Remainder as shifted left Start by shifting the Remainder left as before. Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many. Thus the final correction step must shift back only the remainder in the left half of the register

31 DIVIDE HARDWARE Version 3
32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg, (0-bit Quotient reg) Divisor 32 bits 32-bit ALU “HI” “LO” Shift Left Remainder (Quotient) Control 64 bits Write

32 Divide Algorithm Version 3
Start: Place Dividend in Remainder Divide Algorithm Version 3 Remainder Divisor 1. Shift the Remainder register left 1 bit. 2. Subtract the Divisor register from the left half of the Remainder register, & place the result in the left half of the Remainder register. Remainder  0 Test Remainder Remainder < 0 D: 0010 R: 0: Shl R D: 0010 R: 1: R = R–D D: 0010 R: 2b: +D, sl R, 0 D: 0010 R: 1: R = R–D D: 0010 R: 2b: +D, sl R, 0 D: 0010 R: 1: R = R–D D: 0010 R: 2a: sl R, 1 D: 0010 R: 1: R = R–D D: 0010 R: 2a: sl R, 1 D: 0010 R: Shr R(rh) D: 0010 R: 3a. Shift the Remainder register to the left setting the new rightmost bit to 1. 3b. Restore the original value by adding the Divisor register to the left half of the Remainderregister, &place the sum in the left half of the Remainder register. Also shift the Remainder register to the left, setting the new least significant bit to 0. nth repetition? No: < n repetitions Yes: n repetitions (n = 4 here) Done. Shift left half of Remainder right 1 bit.

33 Observations on Divide Version 3
Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit register to shift left or shift right Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide Signed Divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary Note: Dividend and Remainder must have same sign Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., –7 ÷ 2 = –3, remainder = –1 Possible for quotient to be too large: if divide 64-bit interger by 1, quotient is 64 bit


Download ppt "Lecture 6: Multiply, Shift, and Divide"

Similar presentations


Ads by Google