Download presentation

Presentation is loading. Please wait.

Published byPaul Haynes Modified over 2 years ago

1
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania 18042 nestorj@lafayette.edu ECE 313 - Computer Organization Lecture 8 - Multiplication and Division Fall 2004 Reading: 3.4-3.5 Portions of these slides are derived from: Textbook figures © 1998 Morgan Kaufmann Publishers all rights reserved Tod Amon's COD2e Slides © 1998 Morgan Kaufmann Publishers all rights reserved Dave Patterson’s CS 152 Slides - Fall 1997 © UCB Rob Rutenbar’s 18-347 Slides - Fall 1999 CMU other sources as noted

2
ECE 313 Fall 2004Lecture 8 - Mult. and Division2 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Summary

3
ECE 313 Fall 2004Lecture 8 - Mult. and Division3 Multiplication Basic algorithm analogous to decimal multiplication Break multiplier into digits Multiply one digit at a time; shift multiplicand to form partial products Create product as sum of partial products n bit multiplicand X m bit multiplier = (n+m) bit product Multiplicand 0110 (6) Multiplier X 0011 (3) 0110 0000 Product 00010010 (18) Partial Products

4
ECE 313 Fall 2004Lecture 8 - Mult. and Division4 Multiplier Hardware Sequential Combinational

5
ECE 313 Fall 2004Lecture 8 - Mult. and Division5 Sequential Multiplier - First Version Multiplicand (64 bits) Shift Left Multiplier (32 bits) Shift Right Product (64 bits) Write Control 64-bit ALU LSB Multiplicand shifts left Multiplier shifts right Sample LSB of multiplier to decide whether to add

6
ECE 313 Fall 2004Lecture 8 - Mult. and Division6 Algorithm - 1st Cut Multiplier START DONE 1. Test MPY0 1a. Add MCND to PROD Place result in PROD 2. Shift MCND left 1 bit 2. Shift MPY right 1 bit 32nd Repitition? Multiplier0=1Multiplier0=0

7
ECE 313 Fall 2004Lecture 8 - Mult. and Division7 Animation - 1st Cut Multiplier Multiplier Product (64 bits) Write Control 64-bit ALU LSB Multiplicand Multiplicand shifts left Multiplier shifts right Sample LSB of multiplier to decide whether to add

8
ECE 313 Fall 2004Lecture 8 - Mult. and Division8 Sequential Multiplier - 2nd Version Observation: we’re only adding 32 bits at a time Clever idea: Why not... Hold the multiplicand still and… Shift the product right! Multiplicand (32 bits) Multiplier (32 bits) Shift Right Product (64 bits) Write Control 32-bit ALU LSB Shift Right LHPROD (32 bits) RHPROD (32 bits)

9
ECE 313 Fall 2004Lecture 8 - Mult. and Division9 Algorithm - 2nd Version Multiplier START DONE 1. Test MPY0 1a. Add MCND to left half of PROD Place result in left half of PROD 2. Shift PROD right 1 bit 2. Shift MPY right 1 bit 32nd Repitition? Multiplier0=1Multiplier0=0 No: <32 Repititions Yes: 32 Repititions

10
ECE 313 Fall 2004Lecture 8 - Mult. and Division10 Multiplicand (32 bits) Product (64 bits) Write Control 32-bit ALU LSB Shift Right Sequential Multiplier - 3nd Version Observation: we can store the multiplier and product in the same register! As multiplier shifts out…. Product shifts in LHPROD (32 bits) MPY (initial) (32 bits) MP/RHPROD (32 bits)

11
ECE 313 Fall 2004Lecture 8 - Mult. and Division11 Algorithm - 3rd Version Multiplier START DONE 1. Test PROD0 1a. Add MCND to left half of PROD Place result in left half of PROD 2. Shift PROD right 1 bit 0. LOAD MPY in right half of PROD 32nd Repitition? Product0=1Product0=0 No: <32 Repititions Yes: 32 Repititions

12
ECE 313 Fall 2004Lecture 8 - Mult. and Division12 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Summary

13
ECE 313 Fall 2004Lecture 8 - Mult. and Division13 Signed Multiplication with Booth’s Algorithm Originally proposed to reduce addition steps Bonus: works for two’s complement numbers Uses shifting, addition, and subtraction

14
ECE 313 Fall 2004Lecture 8 - Mult. and Division14 Booth’s Algorithm Observation: if we can both add and subtract, there are multiple ways to create a product Example: multiply 2 ten by 6 ten (0010 two X 0110 two ) Product = (2 X 2) + (2 X 4) OR Product = (2 X -2) + (2 X 8) 0010 X 0110 + 0000 shift + 0010 shift + add + 0000 shift 00001100 0010 X 0110 0000 shift - 0010 shift + subtract 0000 shift + 0010 shift + add 00001100 Regular Algorithm Booth’s Algorithm

15
ECE 313 Fall 2004Lecture 8 - Mult. and Division15 Booth’s Algorithm Continued Question: How do we know when to subtract? When do we know when to add? Answer: look for “runs of 1s” in multiplier Example: 001110011 Working from Right to Left, any “run of 1’s” is equal to: - value of first digit that’s one +value of first digit that’s zero Example : 001110011 First run: -1 + 4 = 3 Second run: -16 + 128 = 112 Total: 112 + 3 = 115

16
ECE 313 Fall 2004Lecture 8 - Mult. and Division16 Implementing Booth’s Algorithm Scan multiplier bits from right to left Recognize the beginning and in of a run looking at only 2 bits at a time “Current” bit a i Bit to right of “current” bit a i-1 0110011100 Beginning Of Run Middle Of Run End Of Run Bit a i Bit a i-1 Explanation 10Begin Run of 1’s 11Middle of Run of 1’s 01End of Run 00Middle of Run of 0’s

17
ECE 313 Fall 2004Lecture 8 - Mult. and Division17 Implementing Booth’s Algorithm Key idea: test 2 bits of multiplier at once 10 - subtract (beginning of run of 1’s) 01 - add (end of run of 1’s) 00, 11 - do nothing (middle of run of 0’s or 1’s) Multiplicand (32 bits) Product (64 bits) Write Control 32-bit ALU Shift Left ADD/ SUB 2 Bits 1:0 LHPROD (32 bits) MP/RHPROD (32 bits)

18
ECE 313 Fall 2004Lecture 8 - Mult. and Division18 Booth’s Algorithm Example Multiply 4 X -9 00100 X 10111 000000101110 +111100 (sub 4 / add -4) 111100101110 111110010111 (shift after add) 111111001011 (shift w/ no add) 111111100101 (shift w/ no add) +000100 (add +4) 000011100101 000001110010 (shift after add) +111100 (sub 4 / add -4) 111101110010 111110111001 Remember 4 = 000100 -4 = 111100 1111011100 = -(0000100011 + 1) = -(0000100100) = -36 = 4 X -9! Drop leftmost & rightmost bit

19
ECE 313 Fall 2004Lecture 8 - Mult. and Division19 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Summary

20
ECE 313 Fall 2004Lecture 8 - Mult. and Division20 Combinational Multipliers Goal: make multiplication faster General approach Use AND gates to generate partial products Sum partial products with adders

21
ECE 313 Fall 2004Lecture 8 - Mult. and Division21 Array Multiplier X3X3 X2X2 X1X1 X0X0 Y 0. From J. Rabaey, CMOS Digital Integrated Circuits © Prentice-Hall, 1996 X = multiplicand Y = multiplier

22
ECE 313 Fall 2004Lecture 8 - Mult. and Division22 From J. Rabaey, CMOS Digital Integrated Circuits © Prentice-Hall, 1996 Array Multiplier - Critical Paths Critical Path 1 & 2

23
ECE 313 Fall 2004Lecture 8 - Mult. and Division23 Carry-Save Multiplier From J. Rabaey, CMOS Digital Integrated Circuits © Prentice-Hall, 1996 Ripple carry only in final addition!

24
ECE 313 Fall 2004Lecture 8 - Mult. and Division24 Wallace-Tree Multiplier From J. Rabaey, CMOS Digital Integrated Circuits © Prentice-Hall, 1996 Restructure additions to reduce delay

25
ECE 313 Fall 2004Lecture 8 - Mult. and Division25 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Summary

26
ECE 313 Fall 2004Lecture 8 - Mult. and Division26 Multiply Instructions in MIPS MIPS adds new registers for product result: Hi - upper 32 bits of product Lo - lower 32 bits of product MIPS multiply instructions mult $s0, $s1 multu $s0, $s1 Accessing Hi, Lo registers mfhi $s1 mflo $s1

27
ECE 313 Fall 2004Lecture 8 - Mult. and Division27 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Division Algorithms MIPS Division Instructions Summary

28
ECE 313 Fall 2004Lecture 8 - Mult. and Division28 Division Overview Grammar school algorithm: long division Subtract shifted divisor from dividend when it “fits” Quotient bit: 1 or 0 Question: how can hardware tell “when it fits?” Dividend 10010101000 Divisor -1000 001 1010 -1000 10 Remainder Quotient Dividend = Quotient X Divisor + Remainder 1

29
ECE 313 Fall 2004Lecture 8 - Mult. and Division29 Division Hardware - 1st Version Divisor DIVR (64 bits) Shift R QUOT (32 bits) Shift L Remainder REM (64 bits) Write Control 64-bit ALU Sign bit (REM<0) ADD/ SUB LSB Shift register moves divisor (DIVR) to right ALU subtracts DIVR, then restores (adds back) if REM < 0 (i.e. divisor was “too big”)

30
ECE 313 Fall 2004Lecture 8 - Mult. and Division30 Division Algorithm - First Version START: Place Dividend in REM DONE REM ≥ 0? 2a. Shift QUOT left 1 bit; LSB=1 2. Shift DIVR right 1 bit 1. REM = REM - DIVR 33nd Repitition? REM ≥ 0REM < 0 No: <33 Repetitions Yes: 33 Repetitions 2b. REM = REM + DIVR Shift QUOT left 1 bit; LSB=0 Restore

31
ECE 313 Fall 2004Lecture 8 - Mult. and Division31 Divide 1st Version - Observations We only subtract 32 bits in each iteration Idea: Instead of shifting divisor to right, shift remainder to left First step cannot produce a 1 in quotient bit Switch order to shift first, then subtract Save 1 iteration

32
ECE 313 Fall 2004Lecture 8 - Mult. and Division32 Divide Hardware - 2nd Version Divisor Holds Still Dividend/Remainder Shifts Left End Result: Remainder in upper half of register QUOT (32 bits) Shift L REM (64 bits) Write Control 32-bit ALU Sign bit (REM<0) ADD/ SUB DIVR (32 bits) Shift L LSB

33
ECE 313 Fall 2004Lecture 8 - Mult. and Division33 Divide Hardware - 3rd Version Combine quotient with remainder register REM (64 bits) Write Control 32-bit ALU Sign bit (REM<0) ADD/ SUB DIVR (32 bits) Shift L LSB Shift R

34
ECE 313 Fall 2004Lecture 8 - Mult. and Division34 Divide Algorithm - 3rd Version START: Place Dividend in REM DONE (shift LH right 1 bit) REM ≥ 0? 3a.. Shift REM left 1 bit; LSB=1 1. Shift REM left 1 bit 2. LHREM = LHREM - DIVR 32nd Repitition? REM ≥ 0REM < 0 No: <32 Repetitions Yes: 32 Repetitions 3b. LHREM = LHREM + DIVR Shift REM left 1 bit; LSB=0

35
ECE 313 Fall 2004Lecture 8 - Mult. and Division35 Dividing Signed Numbers Check sign of divisor, dividend Negate quotient if signs of operands are opposite Make remainder sign match dividend (if nonzero)

36
ECE 313 Fall 2004Lecture 8 - Mult. and Division36 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Division Algorithms MIPS Division Instructions Summary

37
ECE 313 Fall 2004Lecture 8 - Mult. and Division37 MIPS Divide Instructions Divide Instructions div $s2, $s3 divu $s2, $s3 Results in Lo, Hi registers Hi: remainder Lo: quotient Divide pseudoinstructions div $s3, $s2, $s1# $s3 = $s2 / $s1 divu $s3, $s2, $s1 Software must check for overflow, divide-by-zero

38
ECE 313 Fall 2004Lecture 8 - Mult. and Division38 Outline - Multiplication and Division Multiplication Review: Shift & Add Multiplication Review: Booth’s Algorithm Combinational Multiplication MIPS Multiplication Instructions Division Division Algorithms MIPS Division Instructions Summary

39
ECE 313 Fall 2004Lecture 8 - Mult. and Division39 Summary - Multiplication and Division Multiplication Sequential multipliers - efficient but slow Combinational multipliers - fast but expensive Division is more complex and problematic What about divide by zero? Restore step needed to undo unwanted subtractions Nonrestoring division: combine restore w/ next subtract (see Problem 3.29) Take a Computer Arithmetic course for more details Coming Up: Floating Point

Similar presentations

OK

Csci 136 Computer Architecture II – Multiplication and Division

Csci 136 Computer Architecture II – Multiplication and Division

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on management by objectives approach Ppt on project life cycle Ppt on beer lambert law definition Ppt on van de graaff generator hair Ppt on airbag working principle of ups Ppt on natural selection 6th grade Convert word document to ppt online Ppt on rural entrepreneurship Ppt on eia report 2016 Ppt on eisenmenger syndrome asd