Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fluid Mechanics Group University of Zaragoza Large Eddy Simulation of the flow past a square cylinder J. S. Ochoa, N. Fueyo Fluid Mechanics Group University.

Similar presentations


Presentation on theme: "Fluid Mechanics Group University of Zaragoza Large Eddy Simulation of the flow past a square cylinder J. S. Ochoa, N. Fueyo Fluid Mechanics Group University."— Presentation transcript:

1 Fluid Mechanics Group University of Zaragoza Large Eddy Simulation of the flow past a square cylinder J. S. Ochoa, N. Fueyo Fluid Mechanics Group University of Zaragoza Spain

2 2 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workContents n Aim n Turbulence Modelling n Case considered n Modelling n Numerical details n Implementation in PHOENICS n Results n Conclusions

3 3 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workAim

4 4 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Turbulence modelling n Simulation of turbulent flows n Reynolds Averaged Navier-Stokes equations n Large Eddy Simulation n Direct Numerical Simulation n LES: Filtering Simulated Modellled

5 5 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Case considered y x U H Square cylinder side Inlet velocity Reynolds number Channel width Channel height Flow H = 40 mm U = 535 mm/s Re = UD/ = W = 400 mm H = 560 mm Water n Experiment of Lyn & Rodi n Square rod in water flow n Flow parameters Inlet Outlet

6 Fluid Mechanics Group University of Zaragoza Modelling

7 7 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workEquations n Governing equations n Continuity n Momentum n Filtered equations n Continuity n Momentum

8 8 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Closure (Smagorinsky) n Sub-grid Reynolds stresses n Turbulent viscosity Turbulence generation function YPLS Constant Filter size Smagorinsky constant

9 Fluid Mechanics Group University of Zaragoza Numerical details

10 10 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workDomain n Dimensions H15H 14H 4.5H H 4H y z z x H = 40 mm Flow Inlet Flow Outlet y zx

11 11 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workGrid n 3D grid:120x102x20 y z x z y zx

12 12 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Discretisation details n Convective term n Temporal term n Timestep calculation using CFL limit as guidance Van Leer scheme Implicit 3rd order Adam-Moulton scheme Explicit 2nd order Adam-Bashforth scheme CFL Condition

13 13 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workSolving (blue) (red) n Diferential equations solved n Continuity (Pressure) n Momentum (Velocities) n Scalar marker f n Auxiliary variables n Density n Viscosity n Eddy-viscosity

14 14 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Boundary conditions n Flow n Square-cylinder walls n No-slip condition n Logarithmic functions for filtered velocity Velocities Mass flux Outflow (fixed pressure) Simmetry wall (Free-slip) Simmetry wall (Free-slip)

15 15 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Calculation of integral parameters n Strouhal number f – vortex-shedding frequency n Drag & lift coefficients

16 16 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Implementation in PHOENICS, 1 n Time and spatial definitions Q1 file Major PIL settings Time STEADY=T TLAST=GRND Domain GRDPWR(X,.. GROUND User Module Y CFL Condition Group 2. Z Groups 3,4 and 5. Spatial discretisation SCHEME(VANL1,U1,V1,W1) Group 8. Time discretisation PATCH(TDIS,CELL,... COVAL(TDIS,U1,FIXFLU,GRND) Group 13. V1 W1 High order time scheme Adam-Moulton Scheme Adam-Bashforth Scheme Common formulation of PHOENICS Sources added Common formulation of PHOENICS Sources added

17 17 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Implementation in PHOENICS, 2 n Properties and LES model Q1 file Major PIL settings Group 8. Turbulence model ENUT=GRND Group 9. Variables solved P1,U1,V1,W1,MIXF GROUND User Module Variables stored RHO1,CON1E,CON1N,CON1H YPLS GENK=T Velocity gradients, GEN1 Smagorinsky model Switching Special grounds Dump data Integral parameters RG( ),IG( ),LG( )

18 18 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workComputing n Parallel cluster n Boadicea n Boadicea: Beowulf-Oriented Architecture for Distributed, Intensive Computing in Engineering Applications n Installed at Fluid Mechanics Group (University of Zaragoza, Spain) n 66 CPUs (33 dual nodes) n Pentium III, 550 MHz n 256 Mb memory/node n 10Gb disk space/node n Linux n PHOENICS V3.5

19 Fluid Mechanics Group University of Zaragoza Results n 2D analysis n 3D simulation

20 20 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 2D: Influences Van Leer scheme n Vertical velocity V1 Sampling Point 2H Van Leer No scheme t (s) V1 (m/s)

21 21 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 2D: Influences of Adam-Moulton scheme n Vertical velocity V1 Sampling Point 2H Adam Moulton No scheme V1 (m/s) t (s)

22 22 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 2D: Influences of Smagorisnky model n Vertical velocity V1 Sampling Point 2H Combined effect Smagorinsky No model V1 (m/s) t (s)

23 23 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Smagorinsky model 2D: Combined effect n Vertical velocity V1 Sampling Point 2H Combined effect All models and schemes No model V1 (m/s) t (s)

24 24 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work n Mean axial velocity along the centreline 2D: Grid influence 120x84 grid 240x168 grid 360x252 grid 120x102 grid U axial (m/s) Domain length H 120x x x84 360x252

25 25 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Animation of results n Mixture-fraction contours

26 26 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D Results n Integral parameters Work:Label St Numerical data: Verstappen and Veldman [23]GRO Porquie et. al. [13] - Simulation 1UK Simulation 2UK Simulation 3UK Murakami et. Al. [29]NT Wang and Vanka [4]UOI Nozawa and Tamura [10]TIT Kawashima and Kawamura [14] - Simulation 1ST Simulation 2ST Experimental data: Lyn et. al. [2] [3]EXP This workS8A

27 27 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison among data, 1 n Experimental and this work data Domain length H U axial (m/s)

28 28 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison among data, 2 n Numerical, experimental and this work data U axial (m/s) Domain length H

29 29 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Streamlines n Comparison between experimental and numerical streamlines ExperimentalThis work

30 30 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Iso-vorticity contours Vorticity n Streamwise n Spanwise Vorticity

31 31 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Turbulence viscosity (ENUT) n Streamwise ENUT

32 32 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison between LES & RANS, 1 n Vertical velocity V1 Sampling Point 2H U axial (m/s) LES K-epsilon t (s)

33 33 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work 3D: Comparison between LES & RANS, 2 n Mean axial velocity on the center plane U axial (m/s) Domain length H LES K-epsilon

34 34 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Animation: mixf

35 35 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work Animation: spanwise vorticity

36 36 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workSpeedup Grid 120x102x20 24 min/dt1 processor 12 processors3 min/dt 30 sweeps/dt (implicit time) Ideal This work Processors used (n) Speedup Computing time: approx 11 hr (on 12 processors) Domain split along z direction

37 37 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further workConclusions n LES implemented to PHOENICS n Agreement with both numerical and experimental data n High order schemes increase accuracy n Flow well predicted n Superiority of LES over RANS n Reasonable time using parallel PHOENICS v3.5

38 38 Turbulence modelling Case considered Modelling Equations Numerical details Domain & grid Solving BC Discretisation Int. parameters Computing Iimplementation in PHOENICS Results Conclusions Further work n Large Eddy Simulation of Turbulent flames

39 Fluid Mechanics Group University of Zaragoza End of presentation Thank you


Download ppt "Fluid Mechanics Group University of Zaragoza Large Eddy Simulation of the flow past a square cylinder J. S. Ochoa, N. Fueyo Fluid Mechanics Group University."

Similar presentations


Ads by Google