Presentation is loading. Please wait.

Presentation is loading. Please wait.

Industrial Generation Performance Targets/Goals: » A set of starter methods that are characterized » A grid showing applicability, cost, uncertainty »

Similar presentations


Presentation on theme: "Industrial Generation Performance Targets/Goals: » A set of starter methods that are characterized » A grid showing applicability, cost, uncertainty »"— Presentation transcript:

1 Industrial Generation Performance Targets/Goals: » A set of starter methods that are characterized » A grid showing applicability, cost, uncertainty » Criteria for evaluating all proposed new methods (equivalency, accuracy/uncertainty, etc.) Figure B-1: Industrial Methods Comparison Stakeholders and Roles Government NIST - independent evaluator of key methods vs. standards or other EPA - base method incorporation in rule on results - buy-in on criteria Trade Associations Propose, develop new methods; help fund field demonstrations IndustryField testing, help develop methods, provide data to start the process Applications » Better understanding of where to apply what method by sector, facility, source, etc. » Best application for information derived from methods » Understanding/identification of gaps in methods, leading to development of new methods Impacts » More accurate emissions determination » Lower cost of implementation » Clearer method selection » More comparability across industry Technology and Measurement Science Challenges/Barriers » Combustion CO2 measurement methods lack: » A good comparison of accuracy, uncertainty, and other characteristics of direct measure (CEMs) vs. indirect measure (fuel value and quantity) » Relative comparison of applicability, cost-effectiveness, etc. » Process measurement methods lack: » Emission factors that are proven, developed, and recognized » Good fugitive emissions estimates by area (without each flange measure) Pathway 1.Understand background on current and nearby methods (including review and discussion in industry 2.For combustion, comparison of methods (direct, indirect) for select cases common fuels 3.For process, compare methods (indirect, direct) for select process types, cases 4.Define gaps and discuss with industry best ways to fill them (e.g., uncharacterized emission sources) Short Description: Comparison of methods (relative accuracy, uncertainty, cost effectiveness, applicability, robustness, simplicity, etc.)

2 Industrial Generation Performance Targets/Goals: » Policy makers and facilities understand and use the allocation formula » Allocation formula rewards/incentivizes energy efficiency » Allowances are perceived as fair and equitable Figure B-2: Establish Appropriate Basis for Allocation of Emissions Allowances Stakeholders and Roles Industry/Trade Associations Propose methodologies and boundaries and provide additional information Government (EPA, DOE, EIA, etc.)Identify data source, propose boundary conditions Applications » Allocate allowances » Ability to use historical emissions data to project future emissions Impacts » A basis for allocation of emissions allowances » A clear understanding of industrial emissions and key factors that will drive improvements Technology and Measurement Science Challenges/Barriers » Limited understanding of comparative emissions across sectors » Lack of appropriately-defined output metrics for emissions » Energy efficiency » Complexity of facilities, integration » Product mix » Feed mix » Facility boundaries (e.g., purchased power, etc.) Pathway 1.Evaluate methodologies being used/proposed elsewhere and for emissions cap & trade, other performance benchmarks (near term) 2.Evaluate data available (MRR, EIA, etc.) to check adequacy (near term) 3.Develop allocation formula 4.Review with stakeholders Short Description: Identify appropriate ways to distribute allowances reflecting differences in facilities, product slate, feeds, fuel mix

3 Industrial Generation Performance Targets/Goals: » Effective, consistent measurement of heat balance, fuel allocated to thermal/power (combined/simple cycle, etc.) » Effective, consistent allocation of parasitic losses (line loss, energy for pollution controls, etc) Figure B-3: Rules to Evaluate Emissions from Cogeneration Stakeholders and Roles IndustryShare cogeneration data, recommendations Research Institutes (EEI/EPRI)Share Scope 2 data Government (NIST )Standards, methods NGO (WRI)Protocols Applications » Industrial cogeneration » Commercial cogeneration » Better analysis of Scope 2 emissions/alternatives Impacts » Greater expansion of cogeneration » Existing cogeneration not penalized under emissions regulations Technology and Measurement Science Challenges/Barriers » Limited understanding of characterized emissions from cogeneration sources » Lack of standardized methods for consistent handling of different scale cogeneration units » Lack of appropriate evaluation of biogenic emissions Pathway 1.Develop procedures/standards for allocating fuel/heat balance (near-term) 2.Establish criteria for biomass fuel (near-term) 3.Develop method for assessing Scope 2 emissions as opposed to e-grid data 4.Develop standard for boundary of cogeneration systems (small commercial through large industrial) (mid-term) Short Description: Use industry input to develop appropriate rules to evaluate cogeneration emissions, considering scope 1 and 2 emissions

4 Industrial Generation Performance Targets/Goals: » Industry-specific methodology for LCAs » Reasonable ease of implementation » Cost-effective, include other factors (toxicity, disposal method issues, etc.) » Government approved LCA models Figure B-4: Life Cycle Analysis Programs Stakeholders and Roles Industry/manufacturers/LCA consultants Share data, recommend, endorse methods ConsumersFocus priority on products Government Applications » Lifecycle data available: » On all marketed products » To meet customer/government requests Impacts » LCAs for customers and government agencies » Better business strategies to develop and market products Technology and Measurement Science Challenges/Barriers » Lack of clear boundaries on where to begin and where to end » Lack of methods for consistently measuring emissions from secondary sources (supplier, customer, etc.) Pathway 1.Evaluate existing LCA models for industry-specific application (accuracy, scope, cost/benefit) 2.Develop improved methods for LCA components (consumer use, disposal, etc.) 3.Develop streamlined, cost effective tools Short Description: Standard method/protocol for product life cycle analysis (LCA)

5 Industrial Generation Performance Targets/Goals: » Accurate site wide measurements » Focused areas of studies to assess gaps and additional needs Figure B-5: Integrating Bottom-up and Top-Down Data Stakeholders and Roles National labs Academia Standards organizations - (ANSI, ISO, ASTM, etc.) Applications » Quantify regional and global emissions » Verify reported emissions (by facilities, regional, countries) Impacts » Clarify use and need for this comparisons » Determine best approach: tracking regional/global emissions or verifying reported data Technology and Measurement Science Challenges/Barriers » Differing scope of the approaches » Difficulty of measuring direct emissions from facilities vs. regions » Multiple technologies are available for both approaches » The accuracy of methodologies needs to be evaluated » Lack of ability to quantify carbon cycle (sources, sinks) » Concern re” impact of atmospheric conditions on data Pathway 1.Inventory and evaluate existing methodologies (near-term) 2.Conduct focused study to identify gaps and additional needs (near-term) 3.Develop new/improved technologies (mid-term) 4.Deployment of new technologies (long-term) Short Description: Lack of compatibility of emissions data being collected by bottom-up compared to top-down methods

6 Industrial Generation Performance Targets/Goals: » Better applicability to industry sectors » Better comparability of results between industry sectors Figure B-6: Scientific Community Input to Development of Regulations Stakeholders and Roles Industry Trade Associations Government (EPA) Applications » Rule development » Compliance and/or performance criteria Impacts » Better regulations » Increased “buy-in” to regulations Technology and Measurement Science Challenges/Barriers » Lack of mutual trust » Lack of resources and time allowed to develop sound regulations Pathway 1.Technical workshops and meetings (near) 2.Communication between industry, trade associations, and regulators Short Description: Need scientific and industry input to development of regulations based on reporting results


Download ppt "Industrial Generation Performance Targets/Goals: » A set of starter methods that are characterized » A grid showing applicability, cost, uncertainty »"

Similar presentations


Ads by Google