Presentation is loading. Please wait.

Presentation is loading. Please wait.

HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for.

Similar presentations


Presentation on theme: "HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for."— Presentation transcript:

1

2 HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for Automation in Nanobiotech Robotics & Mechatronics Research Lab., Monash University Dept of Micro-Nano Systems Eng., Nagoya University IEEE NANO 2007 Int’l Conf. on Nanotechnology Hong Kong, China August 2-5, 2007 www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

3 The new era of Nanotechnology is coming www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

4 Medical Nanorobot Research Nanorobot Research Challenge Research Objectives Research Methodology Computational Analysis Nanorobot Design Sensing Methodology Control Model Verification Methodologies Nanorobot IC Layout Conclusion P r e s e n t a t i o n o u t l i n e : www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

5 1. MEDICAL NANOROBOT RESEARCH - Quantum Dot new materials - Genome analysis - Biomedical Problems - Microelectronics miniaturization  nanoelectronics New research subject: - Interdisciplinary focus Natural result from: Motivation: - Establish Methodologies on System and Device Prototyping - Control and Architecture of Nanorobots for Medicine www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

6 2. NANOROBOT RESEARCH CHALLENGE a.Architecture, sensing and actuation at nanoscale: - development of molecular nanomachine & systems  Possible applications: - Nanoassembly automation - Health care b. An acceptable approach i.Agents as assemblers sensory feedback intelligent control is indispensable for micro/nano manipulation ii.Advanced analytical approach as a tool for exploration and design www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

7 3. RESEARCH OBJECTIVES a. Methodology: - Establish the necessary tools for the study of nanorobots b. Control: - Identify methodology to control nanorobots c. Architecture: - Investigate issues associated with hardware requirements d. Flow Signal: - Define the chemical / thermal blood flow signals that interferes with sensing and actuation www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

8 4. RESEARCH METHODOLOGY c. System Identification and Requirements: - System Modular approach to validate nanorobot architecture analysis - Verification Hardware Description Language (VHDL) to verify IC-Layout Architecture simulation a. Characterization of sensor-based events: - Define protein anti-body based signals - Control modelling - nanorobot behaviours b. Biomedical Flow Signal: -Finite Element Method (FEM) to study flow patterns www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

9 5. COMPUTATIONAL ANALYSIS b. Mobile nanorobot interaction and tasks - Perform molecular assembly manipulation - Biomedical engineering applications c. Storage simulation data - Later analyses for nanodevices manufacturing - Serves on sensing/actuation device design - Layout for DNA based new ICs: nanobioelectronics a. A 3D tool to simulate the nanorobot within the human body - Enable fast nanorobots control investigation - Provide physical parameters for manufacturing evaluation - Nanorobot Control Design (NCD) system www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

10 6. NANOROBOT DESIGN b. Nanorobot navigation: - Uses plane surfaces (three fins total) - Propulsion by bi-directional propellers: two simultaneously counter-rotating screw drives- navigational acoustic sensors a. For Molecular Manipulation nanorobot uses actuators nanorobot design www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

11 7. SENSING METHODOLOGY a. Decision planning Medical target delivery Motion: random, chemical, thermochemical Behaviour activation www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

12 b. Physical parameters in the simulator Interactive simulation Blood Flow Signal Analysis (FEM) - velocity - temperature - shear stress - molecular concentrations 7. SENSING METHODOLOGY www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

13 8. CONTROL MODEL a. Nanorobots Collective Control Planning determines the kind of behaviour for r.ψ: y: surplus/deficit to the desired protein/drug amount. w: chemical level of the medical target i at time t. Q: total of protein captured by r in t. d: desired protein compound rate. x: substance amount injected in the medical target i. www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

14 8. CONTROL MODEL b. Signal Sensor - Based Control Reaction : molecules per second v: flow velocity D: diffusion coeficient C: molecules concentration per r: distance from the center of the vessel www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

15 9. VERIFICATION METHODOLOGIES - CASES STUDIES Nanorobots searching for malignant tissues a. Nanorobots for Cancer - Surgery / Drug Delivery / Early Diagnosis www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

16 Constant signal diffusion from injury target Genome Mapping - Chromosome 21 E-cadherin / bcl-2 gradient changed by tumour www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

17 This high constant diffusion could be used as signals for robots. target area signal spreads further throughout vessel E-cadherin / bcl-2: protein signals to detect cancer Chemical & temperature signals activate nanorobots near target. www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

18 20microns diameter vessel Comparative behaviors www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

19 Such control activation parameters could be used for biomedical applications – e.g. Coronary Atherosclerosis Blood temperature in the occluded region b. Nanorobots for Cardiology Blood Pressure Monitoring / Drug Delivery www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

20 Nanorobots and Red Blood Cells Near the vessel occlusion sVCAM-1 chemical signal concentration in the stenosis www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

21 c. Nanorobots for Diabetes - Glucose Monitoring patients must take small blood samples many times a day to control glucose levels. Such procedures are uncomfortable and extremely inconvenient Nanorobots with nanobiochemosensors (hSGLT3) can be used for pervasive diabetes monitoring. www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

22 RF are proposed in our nanorobot architecture for: Upload control Data communication Tele-operation www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

23 Human Genome Mapping  Chromosome 12 DNA Analysis provides antibody agent for CMOS Electro-Chemical biosensors. is progressively advancing through integration of new materials for nanobiosensors and actuator for biomedical application. New NanoCMOS IC Design  Can be applied for cerebral aneurysm with detection of iNOS (inducible Nitric Oxide Synthase) Medical Nanorobots  d. Nanorobots for Brain Aneurysm Early Diagnosis / Nanowire Delivery Brain Aneurysm Bulb www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

24 Diagnosis and detection of vessels dilatation & deformation in early stages is crucial Nanorobots can enable precise delivery of nanowires to fill the aneurysm www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

25 Nanorobots can be used with biosensors to detect iNOS Signals for diagnosis before a stroke happens iNOS (inducible Nitric Oxide Synthase) www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

26 10. Nanorobot IC Layout * CMOS Can be used as embedded nanodevice to build integrated sensors and actuator for nanorobots CMOS achieved 10nm sizes functionality www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

27 * CMOS RF-CMOS with wireless communication is a feasible way to interface with nanorobots – tracking, operation, diagnosis Photonics + Q.D. + nanotubes: enable high performance to production of nanodevices 10. Nanorobot IC Layout www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

28 * CMOS Nanorobot hardware integrated nanocircuit architecture 10. Nanorobot IC Layout www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com Electromagnetic backpropagation waves are used to define the nanorobot positions

29 Selected Peer Reviewed Publications Adriano Cavalcanti, Tad Hogg, Bijan Shirinzadeh, “Nanorobotics System Simulation in 3D Workspaces with Low Reynolds Number”, IEEE-RAS MHS Int’l Symposium on Micro-Nanomechatronics and Human Science, Nagoya, Japan, pp. 226-231, Nov. 2006. Adriano Cavalcanti, Warren W. Wood, Luiz C. Kretly, Bijan Shirinzadeh, “Computational Nanomechatronics: A Pathway for Control and Manufacturing Nanorobots”, IEEE CIMCA Int’l Conf. on Computational Intelligence for Modelling, Control and Automation, IEEE Computer Society, Sydney, Australia, pp. 185-190, Nov. 2006. Journal Adriano Cavalcanti, Bijan Shirinzadeh, Robert A. Freitas Jr., Luiz C. Kretly, “Medical Nanorobot Architecture Based on Nanobioelectronics”, Recent Patents on Nanotechnology, Bentham Science, Vol. 1, no. 1, pp. 1-10, Feb. 2007. Adriano Cavalcanti, Robert A. Freitas Jr., “Nanorobotics Control Design: A Collective Behavior Approach for Medicine”, IEEE Transactions on NanoBioscience, Vol 4., no. 2, pp. 133-140, Jun. 2005. Conference Adriano Cavalcanti, Lior Rosen, Bijan Shirinzadeh, Moshe Rosenfeld, “Nanorobot for Treatment of Patients with Artery Occlusion”, Springer Proceedings of Virtual Concept, Cancun, Mexico, Nov. 2006. Adriano Cavalcanti, “Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control applied to Nanomedicine”, IEEE Transactions on Nanotechnology, Vol. 2, no. 2, pp. 82-87, Jun. 2003. Arancha Casal, Tad Hogg, Adriano Cavalcanti, “Nanorobots as Cellular Assistants in Inflammatory Responses”, IEEE BCATS Biomedical Computation at Stanford 2003 Symposium, IEEE Computer Society, Stanford CA, USA, Oct. 2003. Adriano Cavalcanti, Bijan Shirinzadeh, Declan Murphy, Julian A. Smith, “Nanorobot for Laparoscopic Cancer Surgery”, IEEE-ICIS Int’l Conf. on Computer and Information Science, Melbourne, Australia, pp. 738-743, Jul. 2007. www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

30 Acknowledgments / Technical Collaboration T. Hogg (HP US) W. W. Wood (Michigan State University US) R. A. Freitas Jr. (Inst. for Molecular Manufacturing US) L. Rosen (Tel Aviv University IL) A. Casal (Stanford University US) L. C. Kretly (Campinas University BR) D. Murphy (Guy’s Hospital UK) www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

31 11. CONCLUSION b. Rapid Evaluation of Various Control Algorithms  First methodology for medical nanorobot investigation CONTRIBUTIONS  First nanorobot architecture based on nanobielectronics a. Real-time digital simulation as a valuable tool for the better investigation of biomedical flow signals c. Show a practical approach to investigate nanodevices manufacturing for nanorobots e.g.: transducers/nanobiosensors prototyping www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

32 Just a few quotes… “There is nothing permanent except change.” Heraclitus of Ephesus (ca. 525-475 B.C.) “A scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it.” Max Plank (1858-1947) “A pessimist sees the difficulty in every opportunity; An optimist sees the opportunity in every difficulty.” Winston Churchill (1874-1965) www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com


Download ppt "HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for."

Similar presentations


Ads by Google