Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sergey Eliseev Penning-Trap Mass Spectrometry for Neutrino Physics Max-Planck Institute for Nuclear Physics, Heidelberg, Germany International Workshop.

Similar presentations


Presentation on theme: "Sergey Eliseev Penning-Trap Mass Spectrometry for Neutrino Physics Max-Planck Institute for Nuclear Physics, Heidelberg, Germany International Workshop."— Presentation transcript:

1 Sergey Eliseev Penning-Trap Mass Spectrometry for Neutrino Physics Max-Planck Institute for Nuclear Physics, Heidelberg, Germany International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, January 12, 2015

2 Type of Neutrinos OUTLINE Basics of Penning-Trap Mass Spectrometry PTMS for Neutrino Physics Search for heavy sterile Neutrinos Determination of Neutrino Mass

3 Basics of Penning-Trap Mass Spectrometry

4 Field Examples  m/m Nuclear structure physics shell closures, shell quenching, regions of Astrophysics nuclear models mass formula rp-process and r-process path, waiting-point Weak interaction studies CVC hypothesis, CKM matrix unitarity, Ft of Metrology, fundamental constants α (h/m Cs, m Cs /m p, m p /m e ), m Si Neutrino physics 0 , 0 2EC m mother – m daughter : CPT tests QED in HCI m p and m p m e- and m e+ m ion, electron binding energy 10 -6 to 10 -7 10 -8 10 -9 to 10 -10 10 -8 -10 -9 <10 -11 δV pn, island of stability deformation, drip lines, halos, S n, S p, S 2n, S 2p, nuclei, proton threshold energies, astrophysical reaction rates, neutron star, x-ray burst superallowed ß-emitters Masses of Exotic Nuclides (short-lived to stable) ~10 -10 heavy neutrinos neutrino mass

5 Penning trapthe most accurate mass spectrometer B q/mq/m strong uniform static B-field 1 q c c = 22 m B

6 Penning trapthe most accurate mass spectrometer B q/mq/m strong uniform static B-field 1 q c c = 22 m B SHIPTRAP JYFLTRAP TRIGATRAP MLLTRAP < 5 · 10 -9 BB B h -1 THe-TRAP Max-Planck Institute for Nuclear Physics, Heidelberg < 10 -11 BB B h -1

7 B q/mq/m magnetic field Penning Trap electrostatic field

8 B B Penning Trap modified cyclotron motion: magnetron motion: axial motion:

9 long-lived and stable nuclides short-lived nuclides Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

10 Penning-Traps worldwide TITAN CPT LEBIT JYFLTRAP ISOLTRAP SHIPTRAP MLLTRAP TRIGATRAP FSU on-line facility for short-lived nuclides  m/m ~ 10 -9 (ToF-ICR technique) ultra-precise Penning trap for long-lived and stable nuclides  m/m <10 -10 (FT-ICR technique) THe-TRAP

11 Penning-Traps worldwide TITAN CPT LEBIT JYFLTRAP ISOLTRAP MLLTRAP FSU PENTATRAP TRIGATRAP SHIPTRAP THe-TRAP CMU-TRAP

12 High Precision PTMS Q = M mother - M daughter of  and  transitions type of neutrinos heavy sterile neutrinos     neutrino mass    

13 High Precision PTMS Q = M mother - M daughter of  and  transitions type of neutrinos heavy sterile neutrinos     neutrino mass    

14 double-electron-capture nuclides double  -decay nuclides

15 two-neutrino modeneutrinoless mode

16

17 Observation of 0  or 0 2EC proves that: neutrino is a Majorana particle,  = conservation of total lepton number breaks Measurement of T 1/2 gives: effective Majorana neutrino mass

18 T 1/2 ~10 19 y T 1/2 >10 25 y Neutrinoless Double-   Decay Contribution of Penning Traps: measurements of Q  – values with a sub-keV uncertainty transition Q-value precision 76 Ge – 76 Se 2039.006(50) 6E-10 G. Douysset et al., PRL 86, 4259 (2001) 100 Mo – 100 Ru 3034.40(17) 2E-9 S. Rahaman et al., PLB 662, 111 (2008) 130 Te – 130 Xe 2527.518(13) 1E-10 M. Redshaw et al., PRL 102, 212502 (2009) 136 Xe – 136 Ba 2457.83(37) 3E-09 M. Redshaw et al., PRL 98, 053003 (2007) 48 Ca – 48 Ti 4268.0 (3) 7E-10 M. Redshaw et al., PRC 86, 041306(R) (2013) A.A. Kwiatkowski et al., PRC 89, 045502 (2014) Experiments: GERDA & MAJORANA : 76 Ge NEMO-3: 100 Mo COBRA & CUORE: 130 Te EXO: 136 Xe CANDLES & CARVEL: 48 Ca

19 Neutrinoless Double-Electron Capture expected T 1/2 of 0 2EC > 10 30 yr

20 Neutrinoless Double-Electron Capture

21 resonant enhancement of capture rate Search for a transition with (Q-B 2h -E  ) < 1 keV Measurement of Q=M 1 -M 2 at ~ 100 eV-Level T 1/2 of 0 2EC ~ 10 23 yr Neutrinoless Double-Electron Capture

22 112 Sn → 112 Cd 74 Se → 74 Ge 136 Ce → 136 Ba 96 Ru → 96 Mo 168 Yb → 168 Er 162 Er → 162 Dy 156 Dy → 156 Gd 106 Cd → 106 Pd Measurements with SHIPTRAP/GSI Phys. Rev. C 83 (2011) 038501; 84 (2011) 028501; 84 (2011) 012501; JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009) JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 684, 17 (2010) FSU, B. J. Mount et al., Phys. Rev. C 81, 032501(R) (2010) JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 697, 116 (2011) 124 Xe → 124 Te 130 Ba → 130 Xe 184 Os → 184 W 152 Gd → 152 Sm 164 Er → 164 Dy 180 W → 180 Hf Phys. Rev. Lett. 106 (2011) 052504; 107 (2011) 152501; Addressed 0 2EC transitions Nucl. Phys. A 875 (2012) 1; TRIGATRAP, C. Smorra et al., Phys. Rev. C 86, 044604 (2012)

23 JYFLTRAP JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009) 2EC-transition Q (old), keV  (old), keV Q  (new), keV  (new), keV T 1/2 ·|m 2EC | 2, yr 152 Gd → 152 Sm 54.6(3.5) -0.2(3.5) 55.7(0.2) 0.9(0.2) 10 26 164 Er → 164 Dy 23.3(3.9) 5.2(3.9) 25.07(0.12) 6.81(0.12) 2·10 30 180 W → 180 Hf 144.4(4.5) 13.7(4.5) 143.1(0.2) 12.4(0.2) 3·10 27 0 + → 0 + transitions between nuclear ground states

24 multiple-resonance phenomenon in 156 Dy  |M| =3 for 0 + → 0 + T 1/2 (0 + →0 + ) ~ 3  10 24 y for |m 2EC |=1 eV

25 TITAN CPT LEBIT JYFLTRAP ISOLTRAP SHIPTRAP MLLTRAP TRIGATRAP FSU Q-values of all important 0  – transitions are measured with sufficient accuracy Two resonantly enhanced 0 2EC  – transitions are found THe-TRAP

26 High Precision PTMS Q = M mother - M daughter of  and  transitions type of neutrinos heavy sterile neutrinos     neutrino mass    

27 Determination of Neutrino Mass EC in 163 Ho - Project  - -decay of 187 Re MARE- Project HOLMES - Project  - -decay of Tritium KATRIN - Project with an uncertainty of ~ 0.2 eV Measurements of Q-Values are required with a relative uncertainty (  Q/m) < 10 -11

28 THe-TRAP & PENTATRAP PENTATRAP Max-Planck Institute for Nuclear Physics (Heidelberg) Division “Stored and Cooled Ions” Measurements of mass ratios of with an accuracy of < 10 -11 THe-TRAP 187 Re \ 187 Os 163 Ho \ 163 Dy Tritium \ 3 He PENTATRAP

29 THe-TRAP for KATRIN: 3 H  3 He Q-value Sz. Nagy et al., Euro. Phys. Lett. 74, 404 (2006) Q=18 589.8 (1.2) eV THe-Trap aims for  Q ≈ 20 meV  Q/m < 10 -11 Status:  Q/m ≈ 10 -10 Q = m( 16 O 5+ )-m( 12 C 4+ ) S. Streubel et al., Appl. Phys. B 114, 137 (2014)

30 PENTATRAP for ECHo, HOLMES, MARE Measurements of Q-Values of with an uncertainty of ~ 1 eV Q=2.47 keV Intensity De-Excitation Energy / keV Q=2.55 keV  - -decay of 187 Re EC in 163 Ho

31 Status of PENTATRAP Production of highly charged ions ( 187 Re 50+, Xe 25+, Ar 8+ ) Transport of HCIs to Penning-trap mass spectrometer Trapping of HCIs for up to 30 min. Measurement of the axial-motion frequency

32 Status of PENTATRAP Improvement of the Experiment Performence

33 (NEAR) FUTURE Q-values of 187 Re  -decay & 163 Ho EC with ~ 1 eV uncertainty

34 search for the best  -transition for the neutrino mass determination  -decay of 3 H; Q-value ≈ 18.6 keV  -decay of 187 Re; Q-value ≈ 2.47 keV EC in 163 Ho; Q-value ≈ 2.55 keV

35 Intensity De-Excitation Energy / keV Electron-Capture Transitions Q-value → 0 Q-B electron → 0 search for the best  -transition for the neutrino mass determination

36 search for the best EC-transition for the neutrino mass determination Measurement program for ISOLTRAP and JYFLTRAP

37 Penning Traps for Neutrino Mass M( 187 Re)-M( 187 Os) THe-TRAP PENTATRAP M( 3 H)-M( 3 He) M( 163 Ho)-M( 163 Dy) accuracy < 10 -11 JYFLTRAP ISOLTRAP accuracy ~ 10 -8 search for most suitable EC-transitions

38 High Precision PTMS Q = M mother - M daughter of  and  transitions type of neutrinos heavy sterile neutrinos     neutrino mass    

39 heavy sterile neutrinos: 1 to 100 keV F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005 search in electron capture (EC) F.X. Hartmann, Phys. Rev. C 45 (1992) 900 overview of different approaches KATRIN and MARE (  -decay) H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177 Extension of Standard Model:

40 heavy sterile neutrinos: 1 to 100 keV F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005 search in electron capture (EC) F.X. Hartmann, Phys. Rev. C 45 (1992) 900 overview of different approaches KATRIN and MARE (  -decay) H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177 Extension of Standard Model:

41 Intensity De-Excitation Energy / keV heavy sterile neutrinos in electron capture calorimetric spectrum A(Z,N) + e A(Z-1,N) h + e A(Z-1,N) + E c M1 N1 3 active neutrinos M1 N1 exp  Function(Q-value, U e4 )

42 Measurements of Q-values of most suitable EC-transitions P.E. Filianin et al., ArXiv:1402.4400 nuclidehalf-lifeQ / keVB i / keVB j / keVQ-B i / keV 163 Ho4570 y2.555(16)M 1 : 2.0468(5)N 1 : 0.4163(5)0.51 235 Np396 d124.2(9)K: 115.6061(16)L 1 : 21.7574(3)8.6 157 Tb71 y60.04(30)K: 50.2391(5)L 1 : 8.3756(5)9.76 123 Te10 17 y52.7(16)K: 30.4912(3)L 1 : 4.9392(3)22.2 202 Pb52 ky46(14)L 1 : 15.3467(4)M 1 : 3.7041(4)30.7 205 Pb13 My50.6(5)L 1 : 15.3467(4)M 1 : 3.7041(4)35.3 179 Ta1.82 y105.6(4)K: 65.3508(6)L 1 : 11.2707(4)40.2 193 Pt50 y56.63(30)L 1 : 13.4185(3)M 1 : 3.137(17)43.2 largest sensitivity to U e4 around m 4 ≈ Q - B i contribution of 4 to i-capture only if m 4 ≤ Q - B i

43 10 5 cryogenic microcalorimeters m 4 / (Q - B i ) U e4 2 10 decays/s in each detector Measurement time of 1 year  Q=0, wave functions are known precisely

44 m 4 / keV U e4 2 measurements of Q-values with uncertainties  Q/m < 10 -10 are reqiured measurement programme for PENTATRAP

45 High Precision PTMS Q = M mother - M daughter of  and  transitions type of neutrinos heavy sterile neutrinos completed neutrino mass near future far future

46 Thank you for your attention !


Download ppt "Sergey Eliseev Penning-Trap Mass Spectrometry for Neutrino Physics Max-Planck Institute for Nuclear Physics, Heidelberg, Germany International Workshop."

Similar presentations


Ads by Google