Presentation is loading. Please wait.

Presentation is loading. Please wait.

Carbohydrates © PDST Home Economics.

Similar presentations


Presentation on theme: "Carbohydrates © PDST Home Economics."— Presentation transcript:

1 Carbohydrates © PDST Home Economics

2 Photosynthesis The process by which green plants use energy from the sun to change carbon dioxide and water into glucose and oxygen. Carbon dioxide + Water → Glucose + Oxygen. 6CO H2O → C6H12O O2

3 Classification of Carbohydrates
There are 3 types of carbohydrates Monosaccharides Disaccharides Polysaccharides

4 Monosaccharides- e.g glucose
CH2OH C H OH O C H OH H OH C C H OH C

5 Monosaccharides A Monosaccharide contains one sugar unit
C6H12O6 is the chemical formula of a monosaccharide Glucose, fructose and galactose are the 3 monosaccharides

6 Disaccharides Are formed when two monosaccharides join together with the elimination of water (condensation) There are three disaccharides: maltose, sucrose & lactose The chemical formula is C12H22O11 C6H12O6 +C6H12O6 C12H24O12 - H2O C12H22O11

7 Condensation reaction

8 Polysaccharides These are formed when three or more monosaccharides join together with a loss of a water molecule each time. They may be straight or branched Examples: Starch, pectin, cellulose, gums & glycogen Pectin, cellulose & gums are also known as Non-Starch Polysaccharides Starch is made up of glucose units arranged as follows: Straight chains are known as amylose or Branched chains are known as amylopectin

9 Polysaccharides continued….
Formula: (C6H10O5)n C6H12O6 H2O (C6H10O5)n n=the number of times a bond is formed Chemical structure of a polysaccharide

10 Classification of Carbohydrates
Chemical Formula Example Source Monosaccharides C6H12O6 Glucose Fructose Galactose Fruit Honey Digested milk Disaccharides C12H22O11 Maltose=Glucose+Glucose Sucrose=Glucose+Fructose Lactose=Glucose+Galactose Barley Table sugar Milk Polysaccharides (Complex Carbs) (C6H10O5)n Starch Cellulose non-starch Pectin poly- Glycogen saccharides Bread, pasta Whole cereals Fruit cell wall Liver and muscle cells

11 Non-Starch Polysaccharides
These are also known as NSPs, dietary fibre and roughage NSPs cannot be digested in the body and absorb large amounts of water They aid the removal of waste from the body by a process known as peristalsis Peristalsis is the muscular movement of food along the gut Sources of NSPs include wholemeal bread, brown rice & wholemeal pasta Refined foods contain few if any NSPs

12 Properties of Carbohydrates
Sugar Starch Non-Starch Polysaccharides

13 1.Properties of Sugar 1.Solubility
Sugars are white crystalline compounds that are soluble in water Solubility is increased by heating the water A syrup is formed when sugar is heated 2. Assists Aeration Sugar denatures egg protein, enabling aeration to occur, e.g. in the making of sponge cakes – the egg when whisked with sugar becomes aerated 3. Crystallisation This occurs if more sugar is added than can be absorbed by a liquid Crystal particles are formed when the mixture cools Crystallisation is used in the confectionery and sweet industry

14 1.Properties of Sugar cont….
4. Caramelisation When sugars are heated, they produce a range of brown substances know as a caramel There are ten gradual changes in sugar between melting and caramelisation These stages occur between 104°C & 177°C Eventually, the heat will cause carbonisation (burning)

15 1.Properties of sugar cont….
5. Maillard Reaction Sugar (Carbohydrate) + Amino Acid + Dry Heat = Browning of foods, e.g. roast potatoes 6. Sweetness Sugar has varying degrees of sweetness based on a point scale using the tasting method Sucrose has a relative sweetness of 100 Fructose has a relative sweetness of 170 Lactose has a relative sweetness of 15

16 1.Properties of sugar cont….
7. Hydrolysis Hydrolysis is the chemical breakdown of a molecule by adding water to produce smaller molecules This occurs when water is added to a disaccharide to produce two monosaccharides Hydrolysis is the reverse of the condensation reaction

17 1.Properties of sugar cont….
8.Inversion The hydrolysis of sucrose is also known as the inversion of sucrose (mixture of glucose & fructose), known as ‘invert sugar’ Inversion may be brought about by either: (a) heating sucrose with an acid; or (b) adding the enzyme invertase, or sucrase Invert sugar is used in production of jam

18 2. Properties of Starch Flavour
Starch (a white powder) is not sweet in flavour 2.Solubility Starch is insoluble in cold water Hygroscopic This property relates to how starch absorbs moisture from the air e.g. biscuits soften if they are not kept air tight

19 2. Properties of Starch 4. Dextrinisation
Dextrins are shorter chains of starch On heating, dextrins form longer chains & become brown-coloured substances called pyrodextrins An example of dextrinisation is toasting bread

20 2. Properties of Starch cont…..
5. Gelatinisation is based on the principal that when starch is heated in the presence of water, starch grains swell, burst & absorb the liquid, resulting in the thickening of the liquid As the temperature rises, this mixture becomes even more viscous, forming a sol (A sol contains particles that do not fully dissolve but are evenly dispersed throughout the liquid) On cooling, this becomes a gel An example of this is using flour to thicken soups and sauces

21 2. Properties of Starch 6. Hydrolysis
Hydrolysis is a chemical breakdown of a molecule by adding water to produce smaller molecules Disaccharides become monosaccharides partly due to hydrolysis

22 Properties of Non-Starch Polysaccharides
Cellulose Can absorb large amounts of water Cannot be digested, however adds bulk to the diet (gives a feeling of fullness) Aids the removal of waste from the body Is insoluble in water

23 3. Properties of Non-Starch Polysaccharides
Pectin Pectin is a polysaccharide found in fruit and vegetables It is involved in setting jams & jellies The following shows the pectin change in the ripening of fruit: Under-Ripe to ripe to Over-Ripe Protopectin to Pectin to Pectic Acid (pectose) For pectin extraction : 1. Use fruit rich in pectin, e.g. Blackcurrants & Apples 2. Heat needs to be applied to the fruit 3. Add an acid, e.g. Lemon juice changes protopectin to pectin

24 3. Properties of Non-Starch Polysaccharides
3. Gel Formation When pectin is heated in the presence of acid and sugar, water becomes trapped The long chains of polysaccharides cool to form a gel An example of this is in making jam

25 Effects of Heat on Carbohydrates
Dry Heat Moist Heat Carbohydrate foods browns due to the presence of dextrins, e.g.Toast Sugar caramelises, e.g. Caramel slices Maillard reaction occurs because of the interaction between sugar & amino acids, e.g. roast potatoes Cellulose softens, e.g. cooked vegetables Starch grains swell, burst & absorb liquid, e.g. flour used to thicken sauces Pectin is extracted by heating fruit in water with sugar & acid, e.g. jam making Sugar dissolves in warm liquid, e.g. making syrups

26 Culinary uses of sugar Sweetener - desserts Preservative - jam
Caramelisation – caramel custard Fermentation – yeast bread Gel formation – sugar combines with pectin to form gel – jam making. Colour – a sugar solution prevents discolouration of cut fruit.

27 Culinary uses of starch
Thickener – sauces, soups, stews. Hygroscopic – absorbs moisture to increase shelf life of cakes, keeps baking powder dry. Dextrinisation – browning e.g.toast.

28 Culinary uses of non-starch polysaccharides
Gel formation – jam pectin forms gel with acid and sugar. Cellulose absorbs moisture and gives feeling of fullness. Cellulose adds texture e.g. breakfast cereals

29 Biological Functions of Carbohydrates
Carbohydrates are used for heat and energy for the body. They spare protein so it can be used for growth and repair. Excess carbohydrate is changed to glycogen and stored in liver and muscle as an energy reserve or it is changed to body fat (adipose tissue) which insulates the body. Cellulose moves food through intestine preventing constipation.

30 Digestion of Carbohydrates
Mouth: Physically broken by teeth. Salivary Amylase breaks Starch into Maltose. Stomach: Physically churned up. Intestine: Pancreatic juice Amylase breaks Starch into Maltose. Intestinal Juice: Maltase breaks Maltose into Glucose. Sucrase breaks Sucrose into Glucose & Fructose. Lactase breaks Lactose into Glucose and Galactose.

31 Absorption Absorption:
Monosaccharides are absorbed through the villi of the small intestine into the blood stream and are carried to the liver in the portal vein.

32 Assimilation of Carbohydrates
Monosaccharides can be oxidised to produce energy (cellular respiration). Some monosaccharides are changed to glycogen and stored in liver and muscle as an energy reserve. Excess carbohydrate is changed to body fat and stored in the adipose tissue under the skin. Vitamin B1, B2 and Pyrodoxine are needed to metabolise carbohydrates.

33 Use of templates You are free to use these templates for your personal and business presentations. You can find many more free templates on the Presentation Magazine website


Download ppt "Carbohydrates © PDST Home Economics."

Similar presentations


Ads by Google