Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics 101: Lecture 16, Pg 1 Physics 101: Lecture 16 Angular Momentum Today’s lecture will cover Textbook Chapter 8.7-8.9 Exam II.

Similar presentations


Presentation on theme: "Physics 101: Lecture 16, Pg 1 Physics 101: Lecture 16 Angular Momentum Today’s lecture will cover Textbook Chapter 8.7-8.9 Exam II."— Presentation transcript:

1 Physics 101: Lecture 16, Pg 1 Physics 101: Lecture 16 Angular Momentum Today’s lecture will cover Textbook Chapter 8.7-8.9 Exam II

2 Physics 101: Lecture 16, Pg 2Overview l Review  K rotation = ½ I  2  Torque = Force that causes rotation è Equilibrium  F = 0  = 0 l Today  Angular Momentum L = I    L = 0 if  = 0 06

3 Physics 101: Lecture 16, Pg 3 Linear and Angular LinearAngular Displacement x  Velocity v  Acceleration a  Inertia mI KE ½ m v2 ½ I  2 N2L F=ma  = I  Momentum p = mv L = I  Today 10

4 Physics 101: Lecture 16, Pg 4 Define Angular Momentum MomentumAngular Momentum p = mV L = I  conserved if  F ext = 0conserved if  ext =0 VectorVector! units: kg-m/sunits: kg-m 2 /s 13

5 Physics 101: Lecture 16, Pg 5 Right Hand Rule l Wrap fingers of right hand around direction of rotation, thumb gives direction of angular momentum. l What is direction of angular momentum for wheel A) Up B) Down C) Left D) Right 16

6 Physics 101: Lecture 16, Pg 6 Act: Two Disks A disk of mass M and radius R rotates around the z axis with angular velocity  i. A second identical disk, initially not rotating, is dropped on top of the first. There is friction between the disks, and eventually they rotate together with angular velocity  f. A)  f =  i B)  f = ½  i C)  f = ¼  i ii z ff z Wheel rim drop 20

7 Physics 101: Lecture 16, Pg 7 Act: Two Disks l First realize that there are no external torques acting on the two-disk system. è Angular momentum will be conserved! 00 z 2 1 ff z 20

8 Physics 101: Lecture 16, Pg 8 Lecture 16, Pre-flights You are sitting on a freely rotating bar-stool with your arms stretched out and a heavy glass mug in each hand. Your friend gives you a twist and you start rotating around a vertical axis though the center of the stool. You can assume that the bearing the stool turns on is frictionless, and that there is no net external torque present once you have started spinning. You now pull your arms and hands (and mugs) close to your body. 22

9 Physics 101: Lecture 16, Pg 9 Bonus Question! l There are No External forces acting on the “student+stool” system. A) TrueB) False C) What!? Key is no external torques about vertical axis! FBD has gravity and normal force. 24

10 Physics 101: Lecture 16, Pg 10 Lecture 16, Preflight 1 What happens to the angular momentum as you pull in your arms? 1. it increases 2. it decreases 3. it stays the same L1L1 L2L2 CORRECT 26 “ Since there are no external torques present, the angular momentum is conserved ”

11 Physics 101: Lecture 16, Pg 11 Lecture 16, Preflight 2 11 22 I2I2 I1I1 L L What happens to your angular velocity as you pull in your arms? 1. it increases 2. it decreases 3. it stays the same CORRECT 28 “ Angular velocity increases because the moment of inertia decreases and since angular momentum must stay the same, angular velocity must decrease. ” “From past experiences where many of my friends decided to start spinning me while I was holding a heavy glass mug, you go faster. ! ”

12 Physics 101: Lecture 16, Pg 12 Lecture 16, Preflight 3 What happens to your kinetic energy as you pull in your arms? 1. it increases 2. it decreases 3. it stays the same CORRECT “KE increases since it is inversely related to I according to the equation KE=L^2/2I.” 11 22 I2I2 I1I1 L L (using L = I  ) 30 “Conservation of energy.”

13 Physics 101: Lecture 16, Pg 13 What about Energy Conservation? A) Energy isn’t conserved here B) Energy comes from weights C) Gravitational energy is being converted to rotational kinetic energy D) Energy comes from cookies. E ) I have no clue…. 33

14 Physics 101: Lecture 16, Pg 14 Turning the bike wheel A student sits on a barstool holding a bike wheel. The wheel is initially spinning CCW in the horizontal plane (as viewed from above) L= 25 kg m 2 /s She now turns the bike wheel over. What happens? A. She starts to spin CCW. B. She starts to spin CW. C. Nothing CORRECT 35 Start w/ angular momentum L pointing up from wheel. When wheel is flipped, no more angular momentum from it pointing up, so need to spin person/stool to conserve L!

15 Physics 101: Lecture 16, Pg 15 Turning the bike wheel (more) She is holding the bike wheel and spinning counter clockwise. What happens if she turns it the other ½ rotation (so it is basically upside down from how it started). A) Spins FasterB) Stays sameC) Stops 37

16 Physics 101: Lecture 16, Pg 16 Turning the bike wheel... l Since there is no net external torque acting on the student-stool system, angular momentum is conserved. è Remenber, L has a direction as well as a magnitude! LL Initially: L INI = L W,I = + 25 kg m 2 /s LLL Finally: L FIN = L W,F + L S = -25 kg m 2 /s + L s L s = 50 kg m 2 /s L L W,F LLSLLS L L W,I LLL L W,I = L W,F + L S 39

17 Physics 101: Lecture 16, Pg 17 Act 2 Rotations  l A puck slides in a circular path on a horizontal frictionless table. It is held at a constant radius by a string threaded through a frictionless hole at the center of the table. If you pull on the string such that the radius decreases by a factor of 2, by what factor does the angular velocity of the puck increase? (a) 2 (b) 4 (c) 8 Puck on ice 43

18 Physics 101: Lecture 16, Pg 18 Act 2 Solution l Since the string is pulled through a hole at the center of rotation, there is no torque: Angular momentum is conserved. L 1 = I 1  1 = mR 2  1  m R  m R/2 L 2 = I 2  2 = m  2 = mR 2  1 = m R 2  2  1 =  2  2 = 4  1 45

19 Physics 101: Lecture 16, Pg 19 Gyroscopic Motion: l Suppose you have a spinning gyroscope in the configuration shown below: l If the left support is removed, what will happen??  pivot support g 48

20 Physics 101: Lecture 16, Pg 20 Gyroscopic Motion... l Suppose you have a spinning gyroscope in the configuration shown below: l If the left support is removed, what will happen? è The gyroscope does not fall down!  pivot g 45

21 Physics 101: Lecture 16, Pg 21 Gyroscopic Motion... precesses l... instead it precesses around its pivot axis !  pivot Bicycle wheel

22 Physics 101: Lecture 16, Pg 22Summary  = I  L = I  è Right Hand Rule gives direction  If  = 0, L is conserved

23 Physics 101: Lecture 16, Pg 23 Practice Problems for Chapt 8 Probs. 13, 17, 25, 29, 31, 33, 35, 37, 43, 49, 53, 55, 57, 61, 65, 67, 69 (hard!), 73, 75, 77, 79, 81, 85, 89, 105, 113


Download ppt "Physics 101: Lecture 16, Pg 1 Physics 101: Lecture 16 Angular Momentum Today’s lecture will cover Textbook Chapter 8.7-8.9 Exam II."

Similar presentations


Ads by Google