Presentation is loading. Please wait.

Presentation is loading. Please wait.

Heidelberg, 11-12 May 1998 AIMS’99 Workshop Internet Protocol version 6 (IPv6) Úna Logan Broadcom Eireann Research Ltd.

Similar presentations


Presentation on theme: "Heidelberg, 11-12 May 1998 AIMS’99 Workshop Internet Protocol version 6 (IPv6) Úna Logan Broadcom Eireann Research Ltd."— Presentation transcript:

1 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Internet Protocol version 6 (IPv6) Úna Logan Broadcom Eireann Research Ltd. http://www.broadcom.ie

2 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Topics EURESCOM Project P803 Why IPv6? Key IPv6 Features IPv6 Header Benefits of IPv6 over IPv4 IPv6 Transition Mechanisms IPv6 Implementations & Deployment Conclusions

3 Heidelberg, 11-12 May 1998 AIMS’99 Workshop EURESCOM Project P803 Development of European IP Testbed between partners to –Investigate IPv6 –Investigate techniques for differentiated QoS in IP networks –Investigate different network architectures –Promote creation of European agreement, build relationships with Internet standards bodies & industry IPv6 –Migration scenarios and Interworking Dual IP Layer, Tunneling, DNS, Compatibility –Protocol related IPv6 issues Mobility, Addressing, Security and Authentication, Routing, Traffic Flows and Multicast and Anycast

4 Heidelberg, 11-12 May 1998 AIMS’99 Workshop H1R1H2 R2 H3 R3 H4 R4 6Bone P803 IPv6 Network H3 R3 H4 R4 H = Host R = Router R RR R 6Bone

5 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Why IPv6 (1)? New version of the Internet Protocol Developed in the early ‘90s in the IETF Designed as an evolutionary step from IPv4 Lack of Address Space was the driving force behind the new Internet Protocol

6 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Why IPv6 (2)? Other kinds of markets will develop –Nomadic Personal Computing Devices –Networked Entertainment –Device Control IPv6 can provide the management and control needed –Common protocol that can work over a variety of networks –Large scale routing and addressing –Communicates with current generation of computers Meets today's requirements and the requirements of these emerging markets

7 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Key IPv6 Features(1) Expanded Addressing Capabilities / Efficient Routing –IPv6 increases the IPv4’s address size from 32 bits to 128 bits –Address Autoconfiguration –Unicast, Anycast and Multicast Addresses –Hierarchical Addressing Structure Header Format Simplification –New streamlined header Improved Support for Options / Extensions –Allows efficient forwarding –Ability to add new options in the future

8 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Key IPv6 Features(2) Flow Labeling Capability –Labeling of packets belonging to particular traffic "flows" for which the sender requests special handling Mobility –Built in Route Optimisation Security –Authentication and Encryption.

9 Heidelberg, 11-12 May 1998 AIMS’99 Workshop IPv6 Packet Header Format Ver : Version number TC : (Traffic Class)Identify different classes or priority Flow Label : Request for special handling by routers within a network Payload Length : Length of the remainder of the packet following the IPv6 header Next Header : Type of header following the IPv6 header Hop Limit : Limitation for the impact of routing loops Source Address Destination Address Ver TC Flow Label Payload Length Next Header Hop Limit 32 bits

10 Heidelberg, 11-12 May 1998 AIMS’99 Workshop IPv6 Flow Label TC Flow Label Differentiated Services : Flow Label Field –Used by hosts to label packets that require special handling by routers Handling can be conveyed to routers –By a control protocol, e.g... RSVP –By information within the flow's packets themselves Integrated Services : Traffic Class –Enables a source to identify the desired delivery priority of its packets, relative to other packets from the same source The Priority values are divided into two ranges –Traffic that "backs off" in response to congestion, such as TCP traffic –Traffic that does not back off in response to congestion, e.g..., "real-time" traffic

11 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Specialised Extension Headers Location –Between the IPv6 header and before the upper layer headers in a packet Efficient –Most not examined or processed until the packet reaches it’s destination Optional Routing Hop-by-Hop Options Destination Options Fragment Authen -tication Destination Options Encapsulating Sec Payload IPv6 Header Extension Headers Upper Layers

12 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Packet Size and Fragmentation High packet latency hinders audio and video streams Fragmentation is a major source of high latency under IPv4 IPv4 provides fragmentation at any point in the path –Routers along the path a packet travels perform fragmentation by so that fragments are at most the size of next-hop link MTU IPv6 provides end-to end fragmentation –A source alone performs fragmentation by using a path MTU discovery algorithm Fragmentation field has moved to an extension header

13 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Voice over IPv6 Problems with voice over IP today –Limited bandwidth –Also, in an Internet connection, the bandwidth can be very inconsistent –Latency –Unpredictable latency times Improvements for voice over IPv6 –Limited bandwidth is not a protocol issue –More efficient routing system –More Efficient End-to-End fragmentation will improve latency –Still unpredictable latency times!

14 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Benefits of IPv6 over IPv4 (1) Addressing scheme –IPv4’s workarounds (e.g.. DHCP and NAT, CIDR) only delay the inevitable! –Address Autoconfiguration reduces set up costs and provides easy renumbering of sites Efficient Routing –Lack of uniformity in IPv4’s hierarchical system, limited addresses… => reduces performance, increases routing complexity and requires more routing information in backbone routers –IPv6’s large hierarchical address space allows efficient routing. Simplified Reworked Packet Structure –Extension headers can be worked in as needed –With IPv6, most options are stored in the Extension headers, reducing processing time at each hop.

15 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Benefits of IPv6 over IPv4 (2) Improved Support for Mobility –Built in Route Optimisation Direct routing to a mobile node QoS –Improved Flow Handling efficiency Security –Built-in, Mandatory Security Home Node Sender Mobile Node IPv4 IPv4 IPv6

16 Heidelberg, 11-12 May 1998 AIMS’99 Workshop 6Bone Correspondent Router Home Agent Router Node Home Agent Router P803 Mobility

17 Heidelberg, 11-12 May 1998 AIMS’99 Workshop IPv6 Implementations Over 50 IPv6 implementations completed or underway worldwide Host Implementations –Apple, Digital UNIX, FreeBSD, Linux, Microsoft, Solaris 2 (Sun), VMS (DEC)… Router Implementations –3Com, Bay Networks, Cisco Systems, Digital, IBM, Ipsilon, Telebit...

18 Heidelberg, 11-12 May 1998 AIMS’99 Workshop The Transition to IPv6 (1) The Transition Features –Incremental upgrade and deployment –Minimal upgrade dependencies –Low start-up costs –Easy Addressing The Transition Mechanisms –Dual IP layer technique –Addressing structures that embed IPv4 addresses within IPv6 addresses –Tunnelling IPv6 packets over IPv4 routing infrastructures Encapsulates IPv6 packets in IPv4 packets Data Transport Layer Transport Layer Header decaps. Header IPv6 Header encaps. Header IPv4 Header

19 Heidelberg, 11-12 May 1998 AIMS’99 Workshop The Transition to IPv6 (2) –Network Address Translation-Protocol Translation (NAT-PT) Allows IPv6-only nodes to interoperate with IPv4-only nodes IPv6 DNS –IETF designers have defined DNS Extensions to Support IPv6 –Creates a new 128-bit DNS record type that will map domain names to an IPv6 address –Reverse lookups based on 128-bit addresses are also defined Application Modification for IPv6 –No direct access to the network stack - requires no updating to run in the dual-stack environment –Directly interfacing with IP and related components - requires updating –Directly interfacing with both IPv4 and IPv6 - requires more extensive updating

20 Heidelberg, 11-12 May 1998 AIMS’99 Workshop The 6Bone Launched in July 1996 Virtual network –Layered on top of portions of the physical IPv4-based Internet to support routing of IPv6 packets Test network –Allows the IPv6 protocol features and interoperability to be fully tested Currently, there 41 countries on the 6Bone Other similar initiatives –Internet2(http://www.Internet2.edu/) –The Wide Project(http://www.v6.wide.ad.jp/)

21 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Conclusions Sooner or later the address space will run out! IPv6 Deployment –Only experimental –Vendors appear committed to the development of IPv6 –The core set of IPv6 protocols due to be fully standardised this year Most IPv6 functionality has been retro-fitted into IPv4 No substitute to a protocol designed from the ground up with scaleable addressing, advanced routing, security, QoS and related features IPv6 provides the platform for new Internet functionality needed in the near future

22 Heidelberg, 11-12 May 1998 AIMS’99 Workshop Additional Information http://www.playground.sun.com/pub/html/ipng-main.html –Pointers to current Specifications and implementations updated on a regular basis http://www.ietf.org/ –Information on the IETF organisation, Internet Standards, Drafts and RFC s http://www.eurescom.de/ –Information on the P803 European IP Testbed http://www.6bone.net/ –Information about the 6Bone and what you need to know in order to participate


Download ppt "Heidelberg, 11-12 May 1998 AIMS’99 Workshop Internet Protocol version 6 (IPv6) Úna Logan Broadcom Eireann Research Ltd."

Similar presentations


Ads by Google