Presentation is loading. Please wait.

Presentation is loading. Please wait.

Smoke Control Systems Introduction and Commissioning

Similar presentations


Presentation on theme: "Smoke Control Systems Introduction and Commissioning"— Presentation transcript:

1 Smoke Control Systems Introduction and Commissioning
NEBB 2010 Semi-Annual Recertification Presented By: Matt Donahue, P.E. January 20, 2009

2 Agenda Codes related to Smoke Control and Design Guides
System Concepts Smoke Control System Information – Using Documents Commissioning

3 Requirements and Standards
International Building Code, Section 909 Formerly 1994 & 1997 UBC Section 905 California Building Code NFPA 92A - Standard for Smoke Control Systems Using Barriers and Pressure Differences NFPA 92B - Standard for Smoke Management in Malls, Atria, and Large Areas

4 Design References Design of Smoke Management Systems –Klote & Milke
ICC Guide to Smoke Control –Evans & Klote NFPA 92A & 92B National Resource Council of Canada

5 Types of Systems Required
The IBC requires systems to be installed or provided for certain special uses or occupancy types. IBC refers designer to Section 909. There are no specific types of systems required by Code. Type is based on a Rational Analysis.

6 International Building Code
Smoke Control Required For: Atrium (Section 404.4) Enclosed Malls when Atrium qualifications are met (Section 402.9) Some Underground Buildings (Section 405.5) Smokeproof Enclosure design options (Sections and ) Stages, in lieu of roof vents (Section )

7 Other Requirements May be required by local (or state) ordinances for all high-rise buildings - carry-over from previous codes. Timed egress studies. Smoke protected seating allowances. Alternate Materials and Method Requests.

8 Smoke Control System Concepts Introduction
It is important to recognize that these systems are not intended for: Preservation of contents. Timely restoration of operations. Assistance in fire operations/overhaul. They are intended to: Manage where smoke goes and where smoke does not go. Maintain a tenable environment by limiting the spread of smoke to areas outside the zone of origin (IBC 909.1). They do not always maintain a tenable environment in the smoke control zone of fire origin.

9 Smoke Control System Concepts
“Passive” vs. “Active” Smoke Control Smoke Barriers, Zone Boundaries and Opening Protection Stairwell Pressurization – “Smokeproof” Enclosures” Types of Mechanical Smoke Control Systems

10 Passive vs. Active Control
“Passive” uses building construction to limit the spread of smoke in a structure. “Active” uses mechanical equipment to control the spread of smoke in a structure. Defined as mechanical systems by Code and include pressurization method, airflow method and exhaust method.

11 Passive Smoke Control Previously known as “compartmentation”.
When active is not feasible (small rooms, no make-up air, unoccupied areas) Depends upon location within zone. May be separate zone or part of the same zone (sub-zone). If entirely bounded within a zone, no pressure difference can be obtained between the active and passive zone.

12 Smoke Barriers Used to separate smoke zones: 1-hour rated wall construction, outside wall to outside wall. Leakage area ratios walls exits other shafts floors and roofs openings determined by area

13 Opening Protection in Barriers
Automatic closing (Self-closing OK in many normally closed applications). Tight fitting smoke and draft control. 20-minute rating for doors. Gasketing - top, sides, and sill. Smoke/fire dampers at HVAC openings, Class II minimum leakage rating, 250 oF (121 oC) thermal release.

14 Opening Protection (cont.)
Combination Fire/Smoke Dampers: When a fire damper is used within ductwork on a smoke control system, the operating temperature is required to be at least 50F (10C) above the maximum smoke control temperature or a maximum of 350F (177C). This is to ensure the damper will not close prematurely when the system is operating in the smoke control mode.

15 “Smokeproof” Enclosures
Significant Changes to previous Code approaches used. Multiple Design Options Now Available: Natural ventilation alternative ( ) Mechanical ventilation alternative ( ) Stair pressurization alternative ( )

16 Natural Ventilation Open exterior balcony or vestibule with opening 16 sq. ft. in area facing an open area that is at least 20 ft. in width. Stair enclosure separated from building.

17 Mechanical Ventilation
Stair Shaft Pressurization – ”w.c. (25 Pa) from stair to all vestibules. Relief vent at top of stair shaft adjusted to maintain +0.10” w.c. pressure in stair shaft.

18 Mechanical Ventilation (cont.)
Vestibule Ventilation – One air change/minute supply with exhaust at least 150% of supply. Engineered system sized to provide 90 air changes per hour serving up to three vestibules simultaneously. Smoke trap in vestibule, ceiling at least 20” above door.

19 Mechanical Ventilation (cont.)
Vestibule Ventilation (continued) Supply air within 6” of floor level. Exhaust air entirely within the smoke trap and not more than 6” down from the top of smoke trap. No dampers required in system, unless engineered so.

20 Stair Pressurization Only in fully sprinklered buildings.
Vestibules are not required. Stair Shaft Pressurization – ”w.c. (37 Pa) minimum up to +0.35”w.c. (87 Pa) maximum to all vestibules.

21 Stair Pressurization (cont.)
Major Considerations: Beware of door opening force limitations! Consider maximum stack effect pressures, temperature gradients. Tested with all doors closed. No relief vent required at top of shaft, but may enhance system operation and balance system operation. Difficult to achieve in tall buildings with a single zone in stairway.

22 Ventilation Equipment
Activated at each floor level at the entrance to the “Smokeproof” Enclosure. Ventilation system to be separate from building systems Standby power required. Items to Consider: Suggestions: 1) Stack effect 1) Pre-test before inspector arrives 2) Porosity of walls 2) Door sweeps may help 3) Door leakage 3) Multiple injection points ~7-9 4) Door opening forces floors max. for 1 injection point 5) Climate 4) Adjust fan capacities 5) Adjust barometric damper

23 Mechanical Smoke Control
Pressurization is default design method in IBC. Exhaust can be used with the approval of the AHJ. When is one is better than the other? Exiting considerations. Building configurations. Zone boundaries.

24 Mechanical Smoke Control
Typical Uses of Active Systems: Pressurization – enclosed spaces, office areas, residential corridors, where no make-up air is provided. Exhaust – large open spaces (atrium, mall, etc.) where make up is available or the zone is not completely bounded by walls. Air Flow – protection of openings that do not have physical protection. Modified type systems.

25 Design Options IBC “Pressurization Method” and NFPA 92A - Enclosed spaces, pressure differential developed for containment.

26 Pressurization Method
Pressure difference across barrier at least 0.05-inch water column (12 Pa) for sprinkler protected buildings. Twice the maximum calculated pressure differential produced by the design fire in sprinkler protected buildings. Maximum pressure dependent on door opening forces.

27 Pressurization Method (cont.)
Add up leakage area from construction, openings, including doors, to determine flow rate to achieve pressure differential. Q = 2610 A (ΔP)½ where Q = Leakage Rate (cfm) A = Area of Openings (sq. ft.) ΔP = Pressure Difference (inch w.c.) Problems Building may be tighter than calculated Oversizing fans means additional pressure Balancing with stairs Door opening forces

28 Door Force Calculations
The opening force for doors at smoke zone boundaries is limited to no more than 30 lbs. (Some jurisdictions limit the opening force to no more than 15 lbs.). The opening force is determined by the force to overcome the closing device and the pressure against the door. The larger the door or the greater the pressure difference, the more the opening force will be.

29 IBC “Exhaust Method” and NFPA 92B - Open spaces, smoke exhaust to maintain smoke layer above people on highest occupied level.

30 Exhaust Method Useful for large enclosed volumes.
Maintain smoke 6 ft. above highest walking surface in the zone (previously 10 ft.) Natural or mechanical supply equal to or slightly less than exhaust (85% is general rule of thumb).

31 Exhaust Method (cont.) Maximum velocity of air supply toward the fire is limited to 200 fpm. May affect plume geometry and increase air inducted into the plume. Plume types - must consider the type: Axisymmetric Balcony spill Window

32 Make Up Air The IBC requires make up air to be provided for exhaust method systems. Required to be introduced at a rate slightly less than the exhaust rate and cannot exceed 200 feet per minute towards the fire. As indicated before, the typical rule of thumb is to provide at least 85 percent of this make up air either by mechanical or natural means. The other 15 percent can be obtained through infiltration (building leakage).

33 Make Up Air (cont.) Make up air for high volume rate systems can be difficult to provide given building geometry and configurations. An exhaust rate of 200,000 cfm requires up to 850 square feet of free openings to meet the 85 percent rule. That equates to 85 linear feet of 10 foot high openings!

34 Make Up Air (cont.) Make up air needs to be introduced below the smoke layer. If an exhaust system is being provided for a multi-level space (such as an atrium) the make up air can be introduced at multiple levels, thereby decreasing the impact of the make up air requirements for any one level. The free area of a vent, grille, louver or door opening needs to be included in the make up air flow rate. Most grilles and louvers do not provide 100 percent free openings. Even “bird screens” can limit the free opening by as much as 10 to 15 percent.

35 Airflow Method (cont.) Airflow cannot exceed 200 fpm. Problems:
Must assume temperature of smoke. Not useful for large openings. Not useful for horizontal openings. 200 fpm velocity often exceeded.

36 “6 Air Change” Design In “purging” systems (which are not smoke-control systems) with 6 air changes per hour, air is not completely replaced in 10 minutes. HVAC systems promote mixing of air. 37% of original air (smoke) remains due to dilution and stirring. Detailed discussion in NFPA 92A, Section A

37 Modified Systems Sometimes the building configuration presents restrictions to meeting the specific design criteria for any one of the four prescribed methods. In these situations, a “modified” approach may be necessary.

38 Modified Airflow Below grade parking garages often do not have sufficient height to allow the exhaust method to work and the drive aisles are open to the exterior to prevent practical use of the pressurization method. The Modified Airflow approach has been used under these conditions, which is essentially a purge method approach that limits the make up air to no more than 200 feet per minute at the openings to the exterior or drive aisles. Not very scientific but has been used in many jurisdictions.

39 Design Considerations:
Each of the four prescribed methods of smoke control have certain limitations. Often these come to light during commissioning of the systems. The following are some of the lessons learned during these times.

40 Design Considerations:
It is impossible to get a pressure difference from one space to another if there is no make up air in the adjacent space. Not all small rooms will have smoke tight construction, even if confirmed during the design. Leakage rates given for construction walls, whether leaky or tight will always differ in the field from calculations. Horizontal sliding doors that have no bottom tracks do not work well at a pressurization zone boundary. Many building materials thought to be air-tight will leak if not painted or sealed. Air flow measurements at openings can often provide interesting results.

41 Rational Analysis There is no set document that is to be used for the Rational Analysis. Each jurisdiction may require or allow something different. The IBC requires the Rational Analysis to include at a minimum: An explanation of the types of systems to be used. The methods of operation. The systems supporting them. The methods of construction to be used.

42 Rational Analysis The Rational Analysis should include
A description of each zone, including the zone designation. The type or method of smoke control. The method to activate the system. A description of how the system will configure. A description of whether the system will be dedicated or non-dedicated. The pass/fail criteria for each system. What devices and equipment will be monitored and in what position.

43 Rational Analysis Small-scale drawings should be provided that show the zone boundaries and the zone designation. Pressurized exit enclosures, passive zones or sub-zones should also be shown on these drawings.

44 Rational Analysis The Rational Analysis should also include information on how and what equipment will be monitored. Dampers to be monitored and which positions are monitored. Door monitoring, if required. How fans will be separated between uses. The design criteria for time to display the various status indications.

45 Rational Analysis The Rational Analysis can be part of an overall document, such as a Fire Protection Report or it can be a separate Smoke Control Report, depending upon the requirements of the local jurisdiction.

46 Rational Analysis An example of a combined analysis may look like this:

47 Rational Analysis And the Small-Scale Drawings like this:

48 Smoke Control Equipment
Fans ( ) Ducts ( ) Dampers (716.3 and ) Power Systems (909.11) Detection & Control Systems (909.12) Firefighters’ Control Panel (909.16)

49 Firefighters’ Control Panel
Multiple Zone Example, shows status and control on a zonal basis only.

50 Firefighters’ Control Panel
Single Zone Example, shows status and control for each piece of equipment.

51 Firefighters’ Control Panel
System Status Indication: Pilot-lamp-type indicators required in (LED’s more commonly used—more reliable, much longer life). Indication by each piece of equipment (fans, dampers). Alternately for complex systems, indication by single smoke zone of all zone associated equipment.

52 Firefighters’ Control Panel
System Control (Override) Capability: Manual switches by each equipment or by whole zone. Don’t blow-up the duct! Stay aware of what you are doing if you throw any switch, anywhere, any time.

53 Commissioning

54 Special Inspection Section requires all smoke control systems to be tested by a Special Inspector. The Special Inspector shall have expertise in fire protection engineering, mechanical engineering and/or certification as air balancers. Special Inspection is to occur: During erection of ductwork and prior to concealment for the purposes of leakage testing and recording of device location. Prior to occupancy and after sufficient completion for the purposes of pressure-difference testing, flow measurements, and detection and control verification.

55 Be Calm in the Chaos

56 Special Inspection Team approach utilizing combination of:
Fire Protection/Mechanical Engineers. Air Balance Personnel. Fire Alarm/Controls Companies. More common during annual retesting.

57 Special Inspection Expertise in multiple fields required.
Team approach often used. Lead Agency with subcontractors, subconsultants to fill out areas of expertise. Observation of Builder’s Subcontractors.

58 Special Inspectors Responsible to certify that the system has been installed in accordance with the approved design documents, which are assumed to comply with the Code. The Special Inspector is not the Designer. Do not redesign the system. Where questions arise in the design, they must be referred to the Designer. Don’t try to break the system, test to the designer’s sequence of operation. Does the system work as designed?

59 Plan for Testing Agree on performance goals. Confirm agreement with:
Contained in approved Rational Analysis. If not, develop a test plan before testing begins. Confirm agreement with: Design Engineer/Architect Building and Fire Inspection Authorities General Contractor All Subcontractors

60 Plan for Testing Schedule test time, including time of day, days of the week. Keep the AHJ informed. Keep the Client informed. Keep the Contractor informed.

61 Inspection Sequence Detailed device inspections.
Subsystem operation tests. Full system functional tests. Air flow/pressure differential verification.

62 Early Stage Inspection Item
Duct leakage: Allowed 5% of fan capacity at 150% static. Test duct work in segments if too large or concealment is imminent. Usually done by the Air Balance firm.

63 Check Devices (Elements)
Fans – tag number, capacity, power, speed, rotation, service rating, VFD settings, HOA bypass.

64 Check Devices (Elements)
Fire & smoke dampers - operation, speed, installation, type, location, power. Doors - label, operation, location. Smoke barriers - leakage, integrity.

65 Check Full System Operation
Sequence of events. Control Priorities—Automatic and Manual Overrides. Operability of other system components in alarm conditions. Emergency power.

66 Functional Testing Pressure differential/exhaust air flow measurements - includes fan data.

67 Functional Testing

68 Pressure Tests Pressure gauges: Inclined manometer:
Lack the accuracy required to measure system performance. Inclined manometer: Specified in IBC, not very accurate.

69 Pressure Tests Transducers: Equipment is calibrated to a known source.
Commonly used by air balance personnel.

70 Door Opening Forces Verify door opening forces on all or representative sample of doors at zone boundaries, including stair doors, to confirm opening force does not exceed the allowed door opening force. Will likely require adjustments to closers in some cases. Test apparatus can be easily obtained but can also be easily lost, so buy many.

71 Flow Rate Measurement Flow hood. Velocity – traverse, pitot tube.

72 Passive Barrier Testing
Listed blower door assemblies. Pressurize room and compare actual leakage to calculated allowable leakage rate at the observed pressure. Configure HVAC to pressurize space. Engineer may provide table of allowable leakage rates at varying pressure differentials.

73 Passive Barrier Testing
In general, if the room is ready to test it should pass and that most rooms have actual leakage less than allowable by up to 50 percent. When testing representative sample of rooms, choose rooms for both sides of building. Equipment is usually calibrated with reference charts to be tested at 0.05-inch water column. When room is too large, multiple fans or door blowers can be used.

74 Test Methods - Reflect Design
Systems are designed to manage where smoke goes. Systems are not designed to provide tenable conditions in the area of fire origin. Smoke tests, if used, should demonstrate air flow direction of the system considering the buoyant nature of smoke.

75 Other Test Methods Chemical smoke, tracer gas and real fire tests.
Limited value in evaluating certain system performance. Validity as methods of testing a smoke-control system is questionable. Detailed discussion in NFPA 92A, Section A and NFPA 92B, Section Some jurisdictions will still require it.

76 Chemical Smoke Products

77 “Cold” Smoke Test

78 Documentation Complete test records are essential.
Provide a copy of all test documentation to the Special Inspector: Copy of deficiency lists provided to General Contractor Copy of interim and final air balance reports. Complete fan start-up information.

79 Documentation – Daily Report
The daily report provides specific information on the areas and system components tested, whether there were any deficiencies noted and resolved or left outstanding.

80 Documentation – NCR The Non-Conformance Report identifies outstanding issues or deficiencies noted during the course of testing and also provides a means to officially notify the Contractor. Deficiencies should be specifically identified.

81 Documentation - Fans

82 Documentation – Passive Barriers

83 Additional Inspection Guidance
National Environmental Balancing Bureau (NEBB). Associated Air Balance Council (AABC). American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). Society of Fire Protection Engineers (SFPE) Sheet Metal and Air Conditioning Contractors National Association (SMACNA).

84 Questions? rjainc.com (925) 938-3550
Thank You For Your Time! Questions? rjainc.com (925)


Download ppt "Smoke Control Systems Introduction and Commissioning"

Similar presentations


Ads by Google