Presentation is loading. Please wait.

Presentation is loading. Please wait.

USE OF GEOTHERMAL ENERGY FOR HEATING SYSTEMS STUDY AND ECONOMIC VIABILITY Artem Reznichenko Jade Hochschule Universidad Politécnica de Valencia 1.

Similar presentations


Presentation on theme: "USE OF GEOTHERMAL ENERGY FOR HEATING SYSTEMS STUDY AND ECONOMIC VIABILITY Artem Reznichenko Jade Hochschule Universidad Politécnica de Valencia 1."— Presentation transcript:

1 USE OF GEOTHERMAL ENERGY FOR HEATING SYSTEMS STUDY AND ECONOMIC VIABILITY Artem Reznichenko Jade Hochschule Universidad Politécnica de Valencia 1

2 Objectives  Study of different Geothermal heat extraction systems  Degree of influence of building’s envelope  Design a Geothermal circuit  Comparison Geothermal Heat Pump system with others 2

3 Geothermal Energy  Geothermal energy is the energy stored in the form of heat under the earth’s surface  High temperature T>150ºC  Intermediate temperature 90ºC < T < 150ºC  Low temperature 30ºC < T <90ºC  Very low temperatures T < 30ºC 3

4 Geothermal Energy  Heat Pump?  The lower AT the higher COP  Reversible 4

5 Geothermal Energy  Heat for a Geothermal Heat Pump 5

6 Geothermal Energy  Types of catchment systems  Horizontal  Vertical  Open loop 6

7 Geothermal Energy  Types of destribution systems  Radiant floor  Radiators  Air ducts 7

8 Theoretical case  Temperatures 8

9 Theoretical case  Obtained Temperatures 5 years and 5 months average Temperature Month T minT maxT avg 1 -12,012,01,8 2 -14,013,01,8 3 -9,020,05,2 4 -4,025,09,3 5 0,028,012,8 6 2,029,014,8 7 4,032,017,8 8 6,034,016,7 9 -20,026,013,3 10 -2,025,09,2 11 -5,018,06,0 12 -11,011,0 1,7 Graph 1 Minimum, maimum an average temperaturas 9

10 Theoretical case  Detached house in Oldenburg  Kitchen+2bathrooms+5 bedrooms 10

11 Theoretical case  Study of building’s envelope  Built in CypeCad Mep 2013 11

12 Theoretical case  Analysis of wall types MonthJan.Febr.Mar.AplilMayJuneJulyAug.Sept.Oct.Nov.Dec. Avg T (ºC) 1,8 5,29,312,814,817,816,713,39,26,01,7 Type 1 (W) 243242432120077150711077282494675599210172152131911124406 Type 2 (W) 2017120168166691254289986918397250578503126601587320239 Type 3 (W) 2145721454177261332795517334419453519023134531687721529 Type 4 (W) 2024220239167281258690306943398650758533127041592920310 Type 5 (W) 2079220790171611288092047046399051168690130021633420863 Type 6 (W) 2034420341168131265090766978400651018576127691600920412 1.52 W/m2K0.45 W/m2K0.74 W/m2K 0.44 W/m2K 0.54 W/m2K0.45 W/m2K 12 14423,93€16401,11€31008,3€31917,33€14196,81€14370,43€

13 Theoretical case  Analysis of wall types 13

14 Theoretical case  Analysis of wall types 14

15 Theoretical case  Analysis of wall types considering price of the materials and energy savings  With performance (COP) = 1, after 10 years thereafter Wall Type 2 has the highest savings  With performance (COP) = 3, the first 20 years Wall Type 6 has narrowly better results Considering price 1kWh = 0.25€ 15

16 Theoretical case  Analysis of wall types EnergyPlus  As an average there is a 32% increase in energy consumption with the manual method. 16

17 Theoretical case  Analysis of roof types 2.86 W/m2K 0.69 W/m2K 0.58 W/m2K 0.5 W/m2K 0.44 W/m2K 0 € 1.217,91 € 1.357,95 € 1.542,55 € 1.886,28 € 17

18 Theoretical case  Analysis of roof types MonthAvg T OLD (ºC) Type 1 (W) Type 2 (W) Type 3 (W) Type 4 (W) Type 5 (W) January 1,820171,410904,210411,310066,39819,8 Februar y 1,820168,910902,910410,110065,19818,6 March 5,216669,99067,68663,38380,28178,0 Aplil 9,312542,76902,86602,96392,96242,8 May 12,88998,75044,04833,74686,34581,1 June 14,86918,53952,93795,23684,73605,8 July 17,83972,12407,52324,32265,92224,3 August 16,75057,82976,92866,32788,72733,3 Septem ber 13,38503,84784,44586,64448,04349,1 October 9,212660,26964,56661,66449,56297,9 Novem ber 6,015873,28649,78265,67996,67804,4 Decem ber 1,720239,110939,710445,110098,99851,5 Per year (kWh) 109279,060117,957503,555672,554364,8 18

19 Theoretical case  Analysis of roof types 19

20 Theoretical case  Analysis of roof types  Evolution of the price with regard to roof’s thermal transmittance 20

21 Theoretical case  Analysis of roof types considering price of the materials and energy savings  With performance (COP) = 1, almost after first year, Roof Type 5 has the best results  Even with performance (COP) = 3, Type 5 has best results from first years 21

22 Theoretical case  Analysis of roof types with EnergyPlus  As an average, EnergyPlus has 16% less energy consumption than manual method. 22

23 Theoretical case  Analysis of concrete decks 0.29 W/m2K 0.24 W/m2K 0.18 W/m2K 2.592,75 € 3.421,46 € 5.078,90 € 23

24 Theoretical case  Analysis of concrete decks MonthAvg T OLD (ºC) Type 1 (W)Type 2 (W)Type 3 (W) January 1,89819,89688,39550,6 February 1,89818,69687,29549,4 March 5,28178,08050,37912,5 Aplil 9,36242,86119,55981,6 May 12,84581,14461,64323,6 June 14,83605,83488,53350,5 July 17,82224,32110,11972,1 August 16,72733,32618,02480,0 Septembe r 13,34349,14230,14092,1 October 9,26297,96174,56036,6 November 6,07804,47677,67539,7 December 1,79851,59720,09582,2 Per year (kWh)54364,853298,652107,1 24

25 Theoretical case  Analysis of concrete decks 25

26 Theoretical case  Analysis of concrete decks considering price of the materials and energy savings  With performance (COP) = 1, almost after 10 years, Concrete Deck type 3 has the best results  Even with performance (COP) = 3, it takes almost 20 years to reach the best results 1kWh = 0,25 € COP = 1 Type (€)Price construction kWh Yearly energy consumpti on / COP (€)Total price 1 year (€) Total price 10 years (€) Total price 20 years (€) Total price 30 years Type 1 2.592,75 €54364,8 16.183,96 € 138.504,82 € 274.416,90 € 410.328,97 € Type 2 3.421,46 €53298,6 16.746,11 € 136.667,98 € 269.914,51 € 403.161,03 € Type 3 5.078,90 €52107,1 18.105,67 € 135.346,57 € 265.614,23 € 395.881,90 € 1kWh = 0,25 € COP = 3 Type (€)Price constructio n kWh Yearly energy consumption / COP (€)Total price 1 year (€) Total price 10 years (€) Total price 20 years (€) Total price 30 years Type 1 2.592,75 €18121,67.123,15 € 47.896,77 € 93.200,80 €138.504,82 € Type 2 3.421,46 €17766,27.863,01 € 47.836,97 € 92.252,48 €136.667,98 € Type 3 5.078,90 €17369,09.421,16 € 48.501,46 € 91.924,01 €135.346,57 € 26

27 Theoretical case  Analysis of concrete decks EnergyPlus  As an average, EnergyPlus has 11% less energy consumption than manual method 27

28 Theoretical case  Final results 0.45 W/m2K 0.44 W/m2K 0.18 W/m2K 28

29 Theoretical case  Final results Month Energy demand kWh January 6248,89 February 6070,27 March 5479,66 April 3437,03 May 2131,94 June 2457,49 July 2129,06 August 2094,49 September 3477,37 October 3117,24 November 5007,18 December 5980,96 Yearly energy demand (kWh) 47631,57 MayJunJulAugTotal Energy demand kWh 2,6218,9108,269,6399,311 Heating system: Cooling system: 29

30 Geothermal installation  Design 30

31 Geothermal installation  Design  Total borehole length: 611.92m  Number of boreholes: 6  Borehole depth: 101.99m  Approximate Price: 33.897 €  Fluid temperatures in year 30: 31

32 Geothermal installation  Design 32

33 Geothermal heat pump  System: water-water, reversible, indoor installation, buffer tank 35l, domestic hot water production 25l/min.  Model: Logatherm WPS 23 R “BUDERUS”  Power: 22.5KW cooling, 23KW heating  COP: 4.69  EER: 3.88  Price: 13349.47 € 33

34 Geothermal heat pump system vs other heating systems GHP + radiant floor GHP + radiators Electric boiler + radiators Electric boiler + radiant floor Gas boiler + radiators Gas boiler + radiant floor Diesel boiler + radiators Diesel boiler + radiant floor 34

35 Geothermal heat pump system vs other heating systems DescriptionQuantityPrice U €Total € m2 Radiant floor 201,668,1313735 U Radiator Aluminium element (AT 50ºC) 64.24W/U for temperature -11ºC (15594.9W) 242215082 U Gas Boiler 30KW 12026,952027 U Electric Boiler 15KW 11291,621292 U Diesel Boiler 20KW 12074,272074 U GHP system (Boreholes+heat pump) 147246,4747246 Compared heating systemsPrices (€) GHP+Radiant floor 60981 GHP+Radiators* 52328 Electric boiler+radiant floor 15027 Electric boiler+radiators 6374 Gas boiler+radiant floor 15762 Gas boiler+radiators 7109 Diesel boiler+radiant floor 15809 Diesel boiler+radiators 7156 35

36 Geothermal heat pump system vs other heating systems SourcePrice € /kWhOrigin Diesel kWh price= 0,086http://www.datosmacro.com Gas kWh price= 0,0536http://www.toptarif.de El. kWh Price = 0,2669http://www.toptarif.de 36

37 Geothermal heat pump system vs other heating systems System Initial investment (€) Yearly Energy Consumption kWh COP of Performance of the system Year 1 (€) Year 10 (€)Year 20 (€)Year 30 (€)Year 40 (€) GHP+Radiant floor60981 47361,57 4,6963676,787934,1114886,8141839,5168792,2 GHP+Radiators*523284,6955023,779281,1106233,8133186,5160139,2 Electric boiler+radiant floor150270,830827,6173036,7331046,7489056,7647066,8 Electric boiler+radiators63740,822174,6164383,7322393,7480403,7638413,8 Gas boiler+radiant floor157620,719388,552027,488292,8124558,3160823,7 Gas boiler+radiators71090,710735,543374,479639,8115905,2152170,7 Diesel boiler+radiant floor158090,721628,073996,3132183,4190370,5248557,6 Diesel boiler+radiators71560,712975,065343,3123530,4181717,5239904,6 37

38 Conclusions  In this particular case, financially, GHP System is not profitable and the best solution is the use of gas boilers  Profitability of gas system depends on its availability and evolution of its price  There are different geothermal circuit designs which could reduce the price and make the system more profitable  Geothermal energy is the most environmentally friendly between studied systems 38

39  Thank you for your attention 39


Download ppt "USE OF GEOTHERMAL ENERGY FOR HEATING SYSTEMS STUDY AND ECONOMIC VIABILITY Artem Reznichenko Jade Hochschule Universidad Politécnica de Valencia 1."

Similar presentations


Ads by Google