1.3 Key Concepts.

Presentation on theme: "1.3 Key Concepts."— Presentation transcript:

1.3 Key Concepts

The Point that divides the segment into two congruent segments.
Midpoint The Point that divides the segment into two congruent segments.

Segment Bisector A Point, Ray, Line, Line Segment, or Plane that intersects the segment at its Midpoint

Midpoint Formula [(x1 + x2)/2], [(y1 + y2)/2]

Distance Formula AB = √[(x2-x1)2 + (y2-y1)2]

Point T is the midpoint of XY . So, XT = TY = 39.9 cm.
EXAMPLE 1 Find segment lengths In the skateboard design, VW bisects XY at point T, and XT = 39.9 cm. Find XY. Skateboard SOLUTION Point T is the midpoint of XY . So, XT = TY = 39.9 cm. XY = XT + TY Segment Addition Postulate = Substitute. = 79.8 cm Add.

Use algebra with segment lengths
EXAMPLE 2 Use algebra with segment lengths Point M is the midpoint of VW . Find the length of VM . ALGEBRA SOLUTION STEP 1 Write and solve an equation. Use the fact that VM = MW. VM = MW Write equation. 4x – 1 = 3x + 3 Substitute. x – 1 = 3 Subtract 3x from each side. x = 4 Add 1 to each side.

EXAMPLE 2 Use algebra with segment lengths STEP 2 Evaluate the expression for VM when x = 4. VM = 4x – 1 = 4(4) – 1 = 15 So, the length of VM is 15. Check: Because VM = MW, the length of MW should be 15. If you evaluate the expression for MW, you should find that MW = 15. MW = 3x + 3 = 3(4) +3 = 15

GUIDED PRACTICE for Examples 1 and 2 In Exercises 1 and 2, identify the segment bisector of PQ . Then find PQ. 1. 3 4 ANSWER MN;

GUIDED PRACTICE for Examples 1 and 2 In Exercises 1 and 2, identify the segment bisector of PQ . Then find PQ. 2. line l ; 11 5 7 ANSWER

EXAMPLE 3 Use the Midpoint Formula a. FIND MIDPOINT The endpoints of RS are R(1,–3) and S(4, 2). Find the coordinates of the midpoint M.

EXAMPLE 3 Use the Midpoint Formula SOLUTION a. FIND MIDPOINT Use the Midpoint Formula. 2 5 1 + 4 – 3 + 2 = , M 1 The coordinates of the midpoint M are 1 , 5 2 ANSWER

EXAMPLE 3 Use the Midpoint Formula b. FIND ENDPOINT The midpoint of JK is M(2, 1). One endpoint is J(1, 4). Find the coordinates of endpoint K.

EXAMPLE 3 Use the Midpoint Formula SOLUTION FIND ENDPOINT Let (x, y) be the coordinates of endpoint K. Use the Midpoint Formula. STEP 1 Find x. STEP 2 Find y. 1+ x 2 = 4+ y 1 2 = 1 + x = 4 4 + y = 2 x = 3 y = – 2 The coordinates of endpoint K are (3, – 2). ANSWER

GUIDED PRACTICE for Example 3 3. The endpoints of AB are A(1, 2) and B(7, 8). Find the coordinates of the midpoint M. ANSWER (4,5) 4. The midpoint of VW is M(– 1, – 2). One endpoint is W(4, 4). Find the coordinates of endpoint V. ANSWER (– 6, – 8)

EXAMPLE 4 Standardized Test Practice SOLUTION Use the Distance Formula. You may find it helpful to draw a diagram.

Standardized Test Practice
EXAMPLE 4 Standardized Test Practice (x – x ) + (y – y ) 2 1 RS = Distance Formula [(4 – 2)] + [(–1) –3] 2 = Substitute. (2) + (–4 ) 2 = Subtract. 4+16 = Evaluate powers. 20 = Add. 4.47 ~ = Use a calculator to approximate the square root. The correct answer is C. ANSWER

GUIDED PRACTICE for Example 4 6. What is the approximate length of AB , with endpoints A(–3, 2) and B(1, –4)? 6.1 units 7.2 units 8.5 units 10.0 units B ANSWER