Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wireless Communication Protocols and Technologies

Similar presentations


Presentation on theme: "Wireless Communication Protocols and Technologies"— Presentation transcript:

1 Wireless Communication Protocols and Technologies
by Tatiana Madsen & Hans Peter Schwefel Mm1 Introduction. Wireless LANs (TKM) Mm2 Wireless Personal Area Networks and Bluetooth (TKM) Mm3 IP Mobility Support (HPS) Mm4 Ad hoc Networks (TKM) Mm5 Overview of GSM, GPRS, UMTS (HPS)

2 Intro: Cellular systems
Geographic region subdivided in radio cells Base Station provides radio connectivity to Mobile Station within cell Handover to neighbouring base station when necessary Base Stations connected by some networking infrastructure

3 Cellular systems: technologies & subscribers
200 400 600 800 1000 1200 1996 1997 1998 1999 2000 2001 2002 year Subscribers [million] GSM total TDMA total CDMA total PDC total Analogue total Total wireless Prediction (1998)

4 Content Introduction GSM GPRS & UMTS
Cellular Concepts & Technologies GSM Network Architecture, Air Interface Signalling/Call Setup, Mobility Support Data Services, HSCSD GPRS & UMTS GPRS: Architecture, Air-Interface, Core-Network Modifications UMTS domains and architecture IP transport in Packet Switched UMTS/GPRS Networks PDP contexts, APNs, TFTs Bearers ’full’ network architecture Exercise

5 GSM: Global System for Mobile Communication
History: 2nd Generation of Mobile Telephony Networks 1982: Groupe Spèciale Mobile (GSM) founded 1987: First Standards defined 1991: Global System for Mobile Communication, Standardisation by ETSI (European Telecommunications Standardisation Institute) - First European Standard 1995: Fully in Operation Deployed in more than 184 countries in Asia, Africa, Europe, Australia, America) more than 747 million subscribers more than 70% of all digital mobile phones use GSM over 10 billion SMS per month in Germany, > 360 billion/year worldwide Today:

6 Base Station Subsystem
GSM – Architecture BSC MS BTS MSC HLR VLR OMC EIR AuC O A bis U m Radio Link Base Station Subsystem Network and Switchung Subsystem Operation Subsystem Connection to ISDN, PDN PSTN Radio Subsystem (RSS) Components: BTS: Base Transceiver Station BSC: Base Station Controller MSC: Mobile Switching Center HLR/VLR: Home/Visitor Location Register AuC: Authentication Center EIR: Equipment Identity Register OMC: Operation and Maintenance Center Transmission: Circuit switched transfer Radio link capacity: 9.6 kb/s (FDMA/TDMA) Duration based charging

7 GSM Services ‘Traditional’ voice services
voice telephony primary goal of GSM was to enable mobile telephony offering the traditional bandwidth of 3.1 kHz emergency number common number throughout Europe (112); mandatory for all service providers; free of charge; connection with the highest priority (preemption of other connections possible) Multinumbering several ISDN phone numbers per user possible voice mailbox (implemented in the fixed network supporting the mobile terminals) Supplementary services, e.g.: identification, call forwarding, number suppression, conferencing ‘Non-Voice’ Services (examples) Fax Transmissions electronic mail (MHS, Message Handling System, implemented in the fixed network) Short Message Service (SMS) alphanumeric data transmission to/from the mobile terminal using the signaling channel, thus allowing simultaneous use of basic services and SMS

8 GSM: Radio Technology Cellular Concept:
segmentation of geographical area into cells Cell sizes vary from some 100 m up to 35 km depending on user density, geography, transceiver power etc. hexagonal shape of cells is idealized (cells overlap, shapes depend on geography) use of several carrier frequencies avoid same frequency in adjoining cells if a mobile user changes cells  handover of the connection to the neighbor cell cell possible radio coverage of the cell idealized shape of the cell

9 GSM: Air Interface I Frequency Division Multiple Access (FDMA)
Separate up-link (MTBTS) and down-link (BTSMT) traffic Two 25MHZ bands Distinguish 124 adjacent channels within each band Each channel 200kHz Radio Network Planning: Determine location of BTS Determine number of TRX per BTS Multiple transceivers (TRX) per BTS (e.g. 1,4 ,or 12)  simultaneous use of different FDMA channels Assign subsets of 124 channels to BTSs

10 GSM: Air Interface II Time Division Multiple Access (TDMA)
TDMA Frame Time Division Multiple Access (TDMA) Within each channel: sequence of TDMA frames TDMA frames subdivided into 8 time-sots

11 GSM: TDMA hierarchy of frames
hyperframe 1 2 ... 2045 2046 2047 3 h 28 min s superframe 1 2 ... 48 49 50 6.12 s 1 ... 24 25 multiframe 1 ... 24 25 120 ms 1 2 ... 48 49 50 235.4 ms frame 1 ... 6 7 4.615 ms slot burst 577 µs

12 GSM Air Interface: Combination of TDMA & FDMA
MHz 124 channels (200 kHz) downlink frequency MHz 124 channels (200 kHz) uplink higher GSM frame structures time GSM TDMA frame 1 2 3 4 5 6 7 8 4.615 ms GSM time-slot (normal burst) guard space guard space tail user data S Training S user data tail 3 bits 57 bits 1 26 bits 1 57 bits 3 546.5 µs 577 µs

13 Functionalities in Radio Subsystem
BTS comprises radio specific functions BSC is the switching center for radio channels

14 Overview: GSM protocol layers for signaling
Um Abis A MS BTS BSC MSC CM CM MM MM RR’ BTSM BSSAP RR BSSAP RR’ BTSM SS7 SS7 LAPDm LAPDm LAPD LAPD radio radio PCM PCM PCM PCM 16/64 kbit/s 64 kbit/s / 2.048 Mbit/s

15 Example: Mobile Terminated Call
calling a GSM subscriber forwarding call to GMSC signal call setup to HLR 5. request MSRN from VLR 6. forward responsible MSC to GMSC 7. forward call to current MSC 8, 9. get current status of MS 10, 11. paging of MS 12, 13. MS answers 14, 15. security checks 16, 17. set up connection 4 HLR VLR 5 8 9 3 6 14 15 PSTN 7 calling station GMSC MSC 1 2 10 13 10 10 16 BSS BSS BSS 11 11 11 11 12 17 MS

16 Example: Message flow between MS and BTS for Mobile Terminated Call
MTC BTS paging request channel request immediate assignment paging response authentication request authentication response ciphering command ciphering complete setup call confirmed assignment command assignment complete alerting connect connect acknowledge data/speech exchange

17 Mobility Support I: Types of handover
1 4 3 2 MS MS MS MS BTS BTS BTS BTS BSC BSC BSC MSC MSC

18 Mobility Support II: Handover decision
receive level BTSold receive level BTSold HO_MARGIN MS MS BTSold BTSnew

19 Mobility support III: Handover procedure
MSC MS BTSold BSCold BSCnew BTSnew measurement report measurement result HO decision HO required HO request resource allocation ch. activation ch. activation ack HO request ack HO command HO command HO command HO access Link establishment HO complete HO complete clear command clear command clear complete clear complete

20 Mobile Communication & Data Traffic
The future Internet will mainly be accessed by mobile devices 200 400 600 800 1000 1200 1400 1600 1800 1995 2000 2005 2010 Subscriptions worldwide (millions) Mobile Internet Subscribers Mobile Fixed Fixed Internet # Mobile Subscribers higher than wired telephony in 2002 Same crossover predicted for Internet access in the next 5 years

21 Data services in GSM Data transmission standardized with only 9.6 kbit/s advanced coding allows 14,4 kbit/s not enough for Internet and multimedia applications HSCSD (High-Speed Circuit Switched Data) mainly software update bundling of several time-slots to get higher AIUR (Air Interface User Rate) (e.g., 57.6 kbit/s using 4 slots, 14.4 each) advantage: ready to use, constant quality, simple disadvantage: channels blocked for voice transmission

22 Content Introduction GSM GPRS & UMTS
Cellular Concepts & Technologies GSM Network Architecture, Air Interface Signalling/Call Setup, Mobility Support Data Services, HSCSD GPRS & UMTS GPRS: Architecture, Air-Interface, Core-Network Modifications UMTS domains and architecture IP transport in Packet Switched UMTS/GPRS Networks PDP contexts, APNs, TFTs Bearers ’full’ network architecture Exercise

23 GPRS: General Packet Radio Service
Packet Switched Extension of GSM 1996: new standard developed by ETSI Components integrated in GSM architecture Improvements: Packet-switched transmission Higher transmission rates on radio link (multiple time-slots) Volume based charging  ‚Always ON‘ mode possible Operation started in 2001 (Germany)

24 GPRS - Architecture Components: Transmission: Radio link:
CCU: Channel Coding Unit PCU: Packet Control Unit SGSN: Serving GPRS Support Node GGSN: Gateway GPRS Support Node GR: GPRS Register Transmission: Packet Based Transmission Radio link: Radio transmission identical to GSM Different coding schemes (CS1-4) Use of Multiple Time Slots Volume Based Charging

25 GPRS: Channel Coding and Multiplexing
..... Time Slot (MS-> BTS) 1 2 3 8 9,05 kbit/s 9,05 kbit/s 9,05 kbit/s 9,05 kbit/s Coding Scheme 1 ..... Selection of Coding depending on quality of radio connection 13,4 kbit/s 13,4 kbit/s 13,4 kbit/s Coding Scheme 2 ..... 15,6 kbit/s 15,6 kbit/s 15,6 kbit/s Coding Scheme 3 ..... ‚optimal‘ radio quality: no interference, etc. 21,4 kbit/s 21,4 kbit/s 21,4 kbit/s Coding Scheme 4 ..... Erhöhte Datenrate bei GPRS durch neue „Coding Schemes“ und Kanalbündelung : „Coding Schemes“ Abhängig von der Qualität der Funkschnittstelle können unterschiedliche „Coding Schemes“ verwendet werden. So hat z.B. das „Coding Scheme 4“ keine „Forward Error Correction“ (FEC) mehr und erlaubt die Übertragung von 21,4kbit/s auf einem physikalischen Kanal (TS). CS-4 kann aber nur bei einer sehr guten Qualität der Funkverbindung eingesetzt werden. (MS sehr nah an der BTS in der unmittelbaren Umgebung) Bündelung mehrerer physikalischer Kanäle: In einer Zelle, die GPRS unterstützt, können ein oder mehrere physikalische Kanäle (Time Slots) für die Übertragung von GPRS-Daten allokiert werden. Theoretisch, wenn alle 8 physikalischen Kanäle zur Datenübertragung mit CS-4 genutzt werden, ist auf der Luftschnittstelle eine „Peak“-Datenrate von bis zu 171,2 kbit/s möglich. Um die zur Verfügung stehenden Funkfrequenzen + Ressourcen optimal für Sprach + GPRS-Datenverkehr zu nutzen gibt es folgendes Konzept: Overall transmission rate ,2 kbit/s

26 Examples for GPRS device classes
Receiving slots Sending slots Maximum number of slots 1 2 3 5 4 8 10 12

27 GPRS user data rates in kbit/s
Coding scheme 1 slot 2 slots 3 slots 4 slots 5 slots 6 slots 7 slots 8 slots CS-1 9.05 18.2 27.15 36.2 45.25 54.3 63.35 72.4 CS-2 13.4 26.8 40.2 53.6 67 80.4 93.8 107.2 CS-3 15.6 31.2 46.8 62.4 78 93.6 109.2 124.8 CS-4 21.4 42.8 64.2 85.6 107 128.4 149.8 171.2

28 GPRS architecture and interfaces
MS BSS GGSN SGSN MSC Um EIR HLR/ GR VLR PDN Gb Gn Gi

29 GPRS Core Network Functions

30 GPRS: Protocol Stack RLC: Radio Link Control LLC: Logical Link Control
Acknowledged mode (reliable) or unacked LLC: Logical Link Control BSSGRP: BSS GPRS Protocol SNDCP: Sub-Network Dependent Convergence Protocol GTP: GPRS Tunneling Protocol Mobility Support

31 Data Units in GPRS

32 Authentication/Ciphering
GPRS: Obtaining IP Connectivity SGSN HLR GPRS attach Authentication of MS Establishment/Initialization of security functions PDP Context Setup Obtain IP address Connect to ‚external‘ network [see later] BSS Um Gb Gr Attach Request (NSAPI,TI,PDP Type) Authentication/Ciphering Authentication/Ciphering Insert Subscriber Data (NSAPI,TI,PDP Type) Insert Subscriber Data Ack (NSAPI,TI,PDP Type) Attach Accept (NSAPI,TI,PDP Type) Attach Complete (NSAPI,TI,PDP Type)

33 Enhanced Data rates for the GSM Evolution (EDGE)
.... Time Slot (MS-> BTS) 1 2 8 Transmission Rate New Modulation Scheme 48 kbit/s 48 kbit/s 48 kbit/s 8 PSK .... kbit/s Advantages Increased Data Rate No Modificatíons in Core Network (SGSN/GGSN) required Disadvantages New Modulationscheme(8 PSK), not compatible to GSMK HW Changes in the BTS required Enhanced Data Rates for the GSM Evolution (EDGE) Mit EDGE (ab Release ‚99) soll durch Änderung des Modulationsverfahrens 8 PSK (Phase Shift Keying) statt 21,4 kbit/s GMSK (Gausschen Minimum Shift Keying; ist quasi eine Art Frequenzmodulation) pro physikalischem Kanal 48 kbit/s realisiert werden. Wieder durch die Bündelung von bis zu 8 Kanälen sind so theoretisch Übertragungsraten bis zu 384 kbit/s möglich. Ein Nachteil: Die Erweiterung des Modulationsverfahrens auf 8PSK zusätzlich zu GSMK erfordert die Erweiterung der BTS-Hardware: Einsatz einer neuen Coding Unit (CU). Da die im SGSN un GGSN benutzten Protokolle (später dazu mehr) keine direkten Einfluß auf die Datenübertragungsrate haben, [wieviel „Bits“ per IP-Protokoll transportiert werden berührt den SGSN nicht] hat die Benutzung des Features EDGE nur einen geringen Einfluß auf die notwendigen Protokollerweiterungen im SGSN und GGSN. Mit EDGE sind Anforderungen an die 3. Mobilfunkgenaration erfüllbar. (Die Änderung des Modulationsverfahrens auf der Luftschnittstelle erfolgt jeweils burstweise. Pro „burst“ jeweils ein Modulationsverfahren GSMK oder 8PSK.) Welche Datendienste „typischerweise“ mit GPRS bzw. EDGE möglich sind, auf der nächsten Folie Literatur: Detailed Operational Specification LM Functional Specification Level 2 P30309-A0295-A H1 Marketing-Präsentationen:

34 3rd Generation Systems: IMT-2000
Proposals for IMT-2000 (International Mobile Telecommunications) UWC-136, cdma2000, WP-CDMA UMTS (Universal Mobile Telecommunications System) from ETSI Frequencies 1850 1900 1950 2000 2050 2100 2150 2200 MHz ITU allocation (WRC 1992) IMT-2000 MSS IMT-2000 MSS GSM 1800 DE CT T D UTRA FDD  MSS T D UTRA FDD  MSS Europe GSM 1800 IMT-2000 MSS IMT-2000 MSS China PHS cdma2000 W-CDMA MSS cdma2000 W-CDMA MSS Japan PCS MSS rsv. MSS North America 1850 1900 1950 2000 2050 2100 2150 2200 MHz

35 Universal Mobile Telecommunication System (UMTS)
Currently standardized by 3rd Generation Partnership Project (3GPP), see [North America: 3GPP2] So far, four releases: R’99, R4, R5, R6 Modifications: New methods & protocols on radio link  increased access bandwidth Coexistence of two domains in the core network Packets Switched (PS) Circuit Switched (CS) New Services IP Service Infrastructure: IP Based Multimedia Subsystems (IMS) (R5)

36 UMTS Domains

37 UMTS Network Domains Radio Access Network Mobile Core Network
Node B (Base station) Radio Network Controller (RNC) Mobile Core Network Serving GPRS Support Node (SGSN) Gateway GPRS Support Node (GGSN) Mobile Switching Center (MSC) Home/Visited Location Register (HLR/VLR) Routers/Switches, DNS Server, DHCP Server, Radius Server, NTP Server, Firewalls/VPN Gateways Application/Services IP-Based Multimedia Subsystem (IMS) [see 9th Semester] Operation, Administration & Maintenance (OAM) Charging Network [Legal Interception]

38 UMTS Radio Access Network (UTRAN): architecture
CDMA (Code Division Multiple Access) on Radio Link transmission rate theoretically up to 2Mbit/s (realistic up to 300kb/s)

39 Content Introduction GSM GPRS & UMTS
Cellular Concepts & Technologies GSM Network Architecture, Air Interface Signalling/Call Setup, Mobility Support Data Services, HSCSD GPRS & UMTS GPRS: Architecture, Air-Interface, Core-Network Modifications UMTS domains and architecture IP transport in Packet Switched UMTS/GPRS Networks PDP contexts, APNs, TFTs Bearers ’full’ network architecture Exercise

40 Transport of IP packets
IP tackets are tunnelled through the UMTS/GPRS network (GTP – GPRS tunneling protocol) Application Server GGSN Terminal SGSN UTRAN GTP-U User IP (v4 or v6) Radio Bearer Application IP v4 or v6 IP v4 or v6 IP v4 or v6 Relay Relay PDCP PDCP GTP‑U GTP‑U GTP‑U GTP‑U RLC RLC UDP/IP v4 or v6 UDP/IP v4 or v6 UDP/IP v4 or v6 UDP/IP v4 or v6 MAC MAC AAL5 AAL5 L2 L2 L2 [Source: 3GPP] L1 L1 ATM ATM L1 L1 L1 Uu Iu-PS Gn Gi

41 IP Transport: Concepts
PDP contexts (Packet Data Protocol) activation done by UE before data transmission specification of APN and traffic parameters GGSN delivers IP address to UE set-up of bearers and mobility contexts in SGSN and GGSN activation of multiple PDP contexts possible Access Point Names (APN) APNs identify external networks (logical Gi interfaces of GGSN) At PDP context activation, the SGSN performs a DNS query to find out the GGSN(s) serving the APN requested by the terminal. The DNS response contains a list of GGSN addresses from which the SGSN selects one address in a round-robin fashion (for this APN). Traffic Flow Templates (TFTs) set of packet filters (source address, subnet mask, destination port range, source port range, SPI, TOS (IPv4), Traffic Class (v6), Flow Label (v6) used by GGSN to assign IP packets from external networks to proper PDP context GPRS tunneling protocol (GTP) For every UE, one GTP-C tunnel is established for signalling and a number of GTP-U tunnels, one per PDP context (i.e. session), are established for user traffic.

42 IP Transport: PDP Context & APNs
PDP Context X1 (APN X, IP address X, QoS1) PDP Context X2 (APN X, IP address X, QoS2) IP Transport: PDP Context & APNs ISP X PDP Context Y (APN Y, IP address Y, QoS) Terminal PDP Context Z (APN Z, IP address Z, QoS) Same PDP (IP) address and APN GGSN SGSN ISP Y APN X PDP Context selection based on TFT (downstream) GGSN APN Y ISP Z APN Z [Source: 3GPP]

43 UMTS Data Transport: Bearer Hierarchy
Air Interface TE MT UTRAN/ CN Iu CN TE/AS GERAN EDGE Gateway NODE End-to-End Service (IP Bearer Service) TE/MT Local UMTS Bearer Service UMTS Bearer External Bearer Bearer Service Service Service Radio Access Bearer CN Bearer Service Service Radio Bearer Iu Bearer Backbone Service Service Bearer Service Physical Physical Radio Bearer Service Service RAN 3G SGSN 3G GGSN User Equipment

44 The ’full picture’ of the UMTS packet switched domain
Roaming Support: UE attaches with SGSN in visited network PDP context is set-up to GGSN in home network (via Gp interface, GRX network)

45 Message Flow: PDP Context Setup

46 Summary Introduction GSM GPRS & UMTS
Cellular Concepts & Technologies GSM Network Architecture, Air Interface Signalling/Call Setup, Mobility Support Data Services, HSCSD GPRS & UMTS GPRS: Architecture, Air-Interface, Core-Network Modifications UMTS domains and architecture IP transport in Packet Switched UMTS/GPRS Networks PDP contexts, APNs, TFTs Bearers ’full’ network architecture Exercise

47 Acknowledgements/References
Lecture notes: Mobile Communciations, Jochen Schiller, Marco Hoffmann, Master Thesis, ‘Simulation of a flow-control algorithm between two nodes of the GPRS network’, TU Munich and Siemens AG, 2001. Tutorial: IP Technology in 3rd Generation mobile networks, Siemens AG (J. Kross, L. Smith, H. Schwefel) Various 3GPP Presentations. J. Schiller: ’Mobile Communications’. Addison-Wesley, 2000. GPRS books: T. Halonen, J. Romero, J. Melero: ‘GSM, GRPS, EDGE Performance: Evolution towards 3G/UMTS’, Wiley, 2003

48 Exercises: Data Rates: A user wants to do an FTP download of a 8MB Power-Point Presentation. Compute the duration of this download for the following access technologies GSM data service HSCSD, 4 timeslots GPRS, 4 timeslots (downlink) EDGE, 8 timeslots Wired ISDN access (64kbit/s) Give at least two reasons why the actual download times are likely to be longer than the ones just computed. Charging: The operator charges in GSM 15cent/min, in GPRS 0.1cent/kB. Compare the costs of the GSM and GPRS download in the FTP case as well as for a Web-session with duration of 1hour and overall data volume of 150kB. IP transport in GPRS networks: a mobile user has set-up a PDP context to an ISP which has assigned him the IP address (private). The user now iniates a web access to the CNN server. Describe the path of the IP packet through the mobile operator’s network, showing the header structure of the packet (detailling the IP source and destination address).


Download ppt "Wireless Communication Protocols and Technologies"

Similar presentations


Ads by Google