Download presentation

Presentation is loading. Please wait.

Published byThomas Robbins Modified about 1 year ago

1
© 2012 IBM Corporation IBM Research Gelling, and Melting, Large Graphs by Edge Manipulation Joint Work by Hanghang Tong (IBM) B. Aditya Prakash (Virginia Tech.) Tina Eliassi-Rad (Rutgers) Michalis Faloutsos (UCR) Christos Faloutsos (CMU) Presenter: Hanghang Tong

2
An Example: Flu/Virus/Rumor/Idea Propagation HealthySick Contact 2

3
An Example: Flu/Virus Propagation HealthySick Contact 1: Sneeze to neighbors 2: Some neighbors Sick 3: Try to recover 3

4
An Example: Flu/Virus Propagation HealthySick Contact 1: Sneeze to neighbors 2: Some neighbors Sick 3: Try to recover Q: How to guild propagation by opt. link structure? 4

5
An Example: Flu/Virus Propagation HealthySick Contact 1: Sneeze to neighbors 2: Some neighbors Sick 3: Try to recover Q: How to guild propagation by opt. link structure? - Q1: Understand tipping point existing work - Q2: Minimize the propagation - Q3: Maximize the propagation 5 This paper

6
IBM Research © 2012 IBM CorporationSocial Analytics & Collaboration Technologies Group 6 Roadmap Motivation: An Illustrative Example Q1: Understanding the Tipping Point (Background) Q2: Minimize Propagation Q3: Maximize Propagation Conclusion

7
Eigenvalue is the Key! [ICDM2011] (Informal Description) For, – any arbitrary topology (adjacency matrix A) – any virus propagation model (VPM) in standard literature (~25 in total) the epidemic threshold depends only on – the λ (leading eigenvalue of A), – some model constant C vpm (by prop. model itself) Theorem [ Faloutsos 2 + ICDM 2011 ]: No epidemic If λ x (C vpm ) ≤ 1. 7

8
Epidemic Threshold for Alternating Behavior [PKDD 2010, Networking 2011] Theorem [PKDD 2010, Networking 2011]: No epidemic If λ(S) ≤ 1. System matrix S = Π i S i S i = (1-δ)I + β A i day N N night N N AiAi …… Log (Infection Ratio) Time Ticks At Threshold Below Above 8

9
Why is λ So Important? λ Capacity of a Graph: Larger λ better connected 9

10
IBM Research © 2012 IBM CorporationSocial Analytics & Collaboration Technologies Group 10 Roadmap Motivation: An Illustrative Example Q1: Understanding the Tipping Point (Background) Q2: Minimize Propagation Q3: Maximize Propagation Conclusion

11
Minimizing Propagation: Edge Deletion Given: a graph A, virus prop model and budget k; Find: delete k ‘best’ edges from A to minimize λ Bad 11 Good

12
Q: How to find k best edges to delete efficiently? Left eigen-score of source Right eigen-score of target 12

13
Minimizing Propagation: Evaluations Time Ticks Log (Infected Ratio) (better) Our Method Aa Data set: Oregon Autonomous System Graph (14K node, 61K edges)

14
Discussions: Node Deletion vs. Edge Deletion Observations: Node or Edge Deletion λ Decrease Nodes on A = Edges on its line graph L(A) Questions? Edge Deletion on A = Node Deletion on L(A)? Which strategy is better (when both feasible)? Original Graph ALine Graph L(A)

15
Discussions: Node Deletion vs. Edge Deletion Q: Is Edge Deletion on A = Node Deletion on L(A)? A: Yes! But, Node Deletion itself is not easy: 15 Theorem: Hardness of Node Deletion. Find Optimal k-node Immunization is NP-Hard Theorem: Line Graph Spectrum. Eigenvalue of A Eigenvalue of L(A)

16
Discussions: Node Deletion vs. Edge Deletion Q: Which strategy is better (when both feasible)? A: Edge Deletion > Node Deletion 16 (better) Green: Node Deletion (e.g., shutdown a twitter account) Red: Edge Deletion (e.g., un-friend two users)

17
IBM Research © 2012 IBM CorporationSocial Analytics & Collaboration Technologies Group 17 Roadmap Motivation: An Illustrative Example Q1: Understanding the Tipping Point (Background) Q2: Minimize Propagation Q3: Maximize Propagation Conclusion

18
Maximizing Propagation: Edge Addition Given: a graph A, virus prop model and budget k; Find: add k ‘best’ new edges into A. By 1 st order perturbation, we have λ s - λ ≈Gv(S)= c ∑ eєS u(i e )v(j e ) So, we are done need O(n 2 -m) complexity Left eigen-score of source Right eigen-score of target Low Gv High Gv 18

19
λ s - λ ≈Gv(S)= c ∑ eєS u(i e )v(j e ) Q: How to Find k new edges w/ highest Gv(S) ? A: Modified Fagin’s algorithm k k #3: Search space k+d Search space :existing edgeTime Complexity: O(m+nt+kt 2 ), t = max(k,d) #1: Sorting Sources by u #2: Sorting Targets by v Maximizing Propagation: Edge Addition

20
Maximizing Propagation: Evaluation Time Ticks Log (Infected Ratio) (better) 20 Our Method

21
IBM Research © 2012 IBM CorporationSocial Analytics & Collaboration Technologies Group Conclusion Goal: Guild Influence Prop. by Opt. Link Structure Our Observation: Opt. Influence Prop = Opt. λ Our Solutions: –NetMel to Minimize Propagation –NetGel to Maximize Propagation t = 1t = 2t = 3

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google