Presentation is loading. Please wait.

Presentation is loading. Please wait.

Symmetries & Conservation Laws Symmetries & Conservation Laws Standard Model and Beyond Standard Model and Beyond Search for New Interactions Search for.

Similar presentations


Presentation on theme: "Symmetries & Conservation Laws Symmetries & Conservation Laws Standard Model and Beyond Standard Model and Beyond Search for New Interactions Search for."— Presentation transcript:

1 Symmetries & Conservation Laws Symmetries & Conservation Laws Standard Model and Beyond Standard Model and Beyond Search for New Interactions Search for New Interactions Questions : Matter-Antimatter Asymmetry ? Questions : Matter-Antimatter Asymmetry ? Precision Experiments Precision Experiments  Field has many Experiments  Field has many Experiments  here Focus on: Ra, Xe,   here Focus on: Ra, Xe,  Klaus Jungmann, KVI, University of Groningen, NL  A few examples only  A few examples only  A few aspects of the full story  A few aspects of the full story  A few examples only  A few examples only  A few aspects of the full story  A few aspects of the full story CP VIOLATION IN ELEMENTARY PARTICLES AND COMPOSITE SYSTEMS PCPV 2013, Mahabaleshwar, India February 2013 with many thanks to L. Willmann

2

3 complementary approaches approaches  Precision Frontier Precision Frontier Direct Search Frontier Experiments at the Frontiers of Standard Theory  Intensity Intensity Frontier Frontier

4 Permanent Electric Dipole Moment violates: Parity Time reversal CP- conservation (if CPT conservation assumed)` Standard Model value orders of magnitude below experimental limit: Window for  Window for New Physics beyond Standard Theory

5 Permanent Electric Dipole Moment violates: Parity Time reversal CP- conservation (if CPT conservation assumed)` Atoms are paticularly interesting : ‘ ‘simple’ structure  large enhancements possible  well established AMO techniques (constantly being improved)  world record values, e.g. in 199 Hg

6 Lines of attack towards an EDM Lines of attack towards an EDM Free Particles AtomsAtoms MoleculesMolecules Condensed State Electric Dipole Moment goal: new source of CP Hg Xe Tl Cs Rb Ra Rn … YbF PbO PbF,ThO HfF +,ThF + WN - … neutron muon proton deuteron bare nuclei ? … garnets (Gd 3 Ga 5 O 12 ) (Gd 3 Fe 2 Fe 3 O 12 ) solid He ? liquid Xe  particle EDM  unique information  new insights  new techniques → challenging technology  electron EDM  strong enhancements  systematics ??  electron EDM  nuclear EDM  enhancements  challenging technology  electron EDM  strong enhancements  new techniques  poor spectroscopic data

7 EDM Limits as of end Why so many ? - Which is THE BEST candidate to choose ? - Why so many ? - Which is THE BEST candidate to choose ? None is THE BEST - We need many experiments! Theoretical Modeld e [e cm] Standard Model< SUSY – Multi Higgs – LeftRight Symmetry –

8 Possible Sources of EDMs The best experiment until now- 199 – Leaves somewhat restricted room for SUSY … The best experiment until now- 199 – Leaves somewhat restricted room for SUSY …

9 Enhancements of particle EDMs  go for heavy systems, where Z>>1, e.g. Hg, Xe  take advantage of enhancements, e.g. Ra  consider molecules such as YbF, RaF, … P. Sandars, 1968

10 ParticleRbCsThFrRaPbOYbF Enhancement Atomic Enhancement Factors for Electron EDM

11 EDMs of atoms of experimental interest ZAtom[S/( e fm3)]e cm [  e cm Expt. 2 3 He Xe Seattle, Ann Arbor, Princeton,Tokyo, Mainz-PTB-HD-KVI Yb-1.93 Bangalore,Kyoto Hg-2.84Seattle Rn TRIUMF Ra Argonne,KVI Ra slide from Victor Flambaum KVI

12 R coefficient in Neutron decay Goal: 0.5% Nuclei ( 8 Li):  R = (22) Final State Interaction ~7  Final State Interaction ~7  R coefficient and EDMs similar sensitive to New Physics

13 199 Hg (2009) d e (SM) < Limit on EDMs vs Time goal 129 Xe 213 Ra 213 Ra goal 129 Xe 213 Ra 213 Ra molecules

14 Generic EDM Experiment PolarizationSpin Rotation Determination of Ensemble Spin average Preparation of J state “pure“ J statePreparation of J state “pure“ J stateInteraction with E - field Interaction with E - field Analysis ofstateAnalysis state Example: d= e cm, E=100 kV/cm, J=1/2  e  15.2 mHz Example: d= e cm, E=100 kV/cm, J=1/2  e  15.2 mHz Electric Dipole Moment: d =   x c -1 J Spin precession :  e  Electric Dipole Moment: d =   x c -1 J Spin precession :  e  h  J  d  J   contains all physics – “e cm” values by themselves not very helpful  contains all physics – “e cm” values by themselves not very helpful   x = eħ/2m x 

15 P Polarization  Efficiency N Average Trap Population T Measurement Time [s]  Spin Coherence Time (  1cycle) [s] E Electric Field [V/cm] P Polarization  Efficiency N Average Trap Population T Measurement Time [s]  Spin Coherence Time (  1cycle) [s] E Electric Field [V/cm] Generic EDM Experiment Sensitivity h P  N *T*   d =  Work on high Polarization, high Field high Efficiency long Coherence Time  one day gives more statistics than needed to reach previous experimental limits  Work on high Polarization, high Field high Efficiency long Coherence Time  one day gives more statistics than needed to reach previous experimental limits ~1~ s 10 5 V/cm < ~ e cm Need to understand systematics d x = d Ra /enhancement same physics sensitivity as 199 Hg due to enhancement factors d x = d Ra /enhancement same physics sensitivity as 199 Hg due to enhancement factors

16 Enhancements of particle EDMs  go for heavy systems, where Z>>1, e.g. Hg, Xe  take advantage of enhancements, e.g. Ra

17 EDMs of atoms of experimental interest ZAtom[S/( e fm3)]e cm [  e cm Expt. 2 3 He Xe Seattle, Ann Arbor, Princeton,Tokyo, Mainz-PTB-HD-KVI Yb-1.93 Bangalore,Kyoto Hg-2.84Seattle Rn TRIUMF Ra Argonne,KVI Ra d n = 5 x e cm , d( 3 He)/ d n = slide from Victor Flambaum

18 Hg EDM University of Washington, Seattle Spin coherence time: 300 sec Electrical Resistance: 2   11 22 33 44 E E

19 Hg EDM University of Washington, Seattle II d( 199 Hg) = (0.49±1.29 stat ±0.76 syst )×10 −29 e cm translates into |d( 199 Hg)| < 3.1×10 −29 e cm (95% C.L.) Systematic limits expected factor of 5 further lower d( 199 Hg) = (0.49±1.29 stat ±0.76 syst )×10 −29 e cm translates into |d( 199 Hg)| < 3.1×10 −29 e cm (95% C.L.) Systematic limits expected factor of 5 further lower W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, E. N. Fortson, Phys. Rev. Lett. 102, (2009) 1 year data  factor 7 improvement  Going on in a structured way

20 clean analysis extraction of various limits from two-electron atom EDM limits

21 EDMs of atoms of experimental interest ZAtom[S/( e fm3)]e cm [  e cm Expt. 2 3 He Xe Seattle, Ann Arbor, Princeton,Tokyo, Mainz-PTB-HD-KVI Yb-1.93 Bangalore,Kyoto Hg-2.84Seattle Rn TRIUMF Ra Argonne,KVI Ra d n = 5 x e cm , d( 3 He)/ d n = slide from Victor Flambaum KVI

22 Radium Permanent Electric Dipole Moment 6 6 Ra also interesting for weak interaction effects Anapole moment, weak charge (Dzuba el al., PRA 6, ) Ra also interesting for weak interaction effects Anapole moment, weak charge (Dzuba el al., PRA 6, ) 3 D : electron spins parallel  electron EDM 1 S : electron Spins anti-parallel  atomic / nuclear EDM 3 D : electron spins parallel  electron EDM 1 S : electron Spins anti-parallel  atomic / nuclear EDM Benefits of Radium near degeneracy of 3 P 1 and 3 D 2 near degeneracy of 3 P 1 and 3 D 2  ~ enhancement  ~ enhancement some nuclei strongly deformed some nuclei strongly deformed  nuclear enhancement  nuclear enhancement 50~1000 (?is Schiff operator correct?) 50~1000 (?is Schiff operator correct?) Benefits of Radium near degeneracy of 3 P 1 and 3 D 2 near degeneracy of 3 P 1 and 3 D 2  ~ enhancement  ~ enhancement some nuclei strongly deformed some nuclei strongly deformed  nuclear enhancement  nuclear enhancement 50~1000 (?is Schiff operator correct?) 50~1000 (?is Schiff operator correct?) TRI  P

23 Deformed Nuclei Enhancement of Dipole Moments

24 ISOLDE Measurements of octupole collectivity in odd-mass Rn, Fr and Ra isotopes CERN-ISOLDE (J. Pakarinen, T. Stora, D. Voulot, F.Wenander),TU Darmstadt (Th. Kröll),GANIL (E. Clément), U Groningen KVI (K. Jungmann, J. Van de Walle, L. Willmann, H.W. Wilschut),U Jyväskylä (T. Grahn, P. T. Greenlees, R. Julin, P. Nieminen),U Kentucky (S.W. Yates),U Köln (A. Blazhev, N. Warr),Lawrence Livermore L (E. Kwan, M. A. Stoyer, C.-Y. Wu),KU Leuven (M. Huyse, P. Van Duppen),U Liverpool (P.A. Butler, R.-D. Herzberg, D.T. Joss, R.D. Page, P. Papadakis, M.Scheck),U Lund (J. Cederkäll),U Michigan (T. Chupp, W. Lorenzon),TU München (V. Bildstein, R. Gernhäuser, R. Krücken, D. Muecher, N. Nowak, K.Wimmer),U Oslo (A.Bürger, M. Guttormsen, A.-C. Larsen, H.T.Nyhus, S. Siem, H.Toft, G. Tveten),U Rochester (D. Cline, A. Hayes),HIL U Warsaw (K. Hadynska-Klek, J. Iwanicki, P. Napiorkowski, D. Pietak, J. Srebrny, K. Wrzosek-Lipska, M. Zielinska),U West Scotland (A. Andreyev, J.F. Smith) Spokesperson: P.A.Butler (Liverpool) Abstract It is proposed to study octupole correlations in odd-mass Rn, Fr and Ra isotopes using Coulomb excitation at MeV.A. These data are necessary to interpret EDM measurements in terms of time-reversal violating interactions. First 2012 on 221 Rn

25 B(E3,0 +  3 - ) in 224 Ra? Octupole collectivity – Macroscopic DPG Frühjahrstagung 2012 Mainz | IKP TU Darmstadt | Dr. Marcus Scheck Multipole expansion of the shape: 2 L -pole and L=3 ⇒ Octupole Multipole expansion of the shape: 2 L -pole and L=3 ⇒ Octupole ISOLDE IS475

26 B(E3,0 +  3 - ) in 224 Ra? Octupole collectivity – Macroscopic DPG Frühjahrstagung 2012 Mainz | IKP TU Darmstadt | Dr. Marcus Scheck Multipole expansion of the shape: 2 L -pole and L=3 ⇒ Octupole Multipole expansion of the shape: 2 L -pole and L=3 ⇒ Octupole Reflection Asymmetric ISOLDE IS475

27 Measure B(E3,0 +  3 - ) strengths Why Coulomb excitation? DPG Frühjahrstagung 2012 Mainz | IKP TU Darmstadt | Dr. Marcus Scheck Decay-process E x more probable Excitation-process Populate 3 - level with E3 in Coulex ⇒ observe E1(and E2) decay  ray(s) Principle: ISOLDE IS475

28 Experimental Information  -ray Spectrum Kinematics and  -ray spectra DPG Frühjahrstagung 2012 Mainz | IKP TU Darmstadt | Dr. Marcus Scheck (Inverse) reaction kinematics Energy [MeV] Polar angle  [ o ] Target recoils Projectiles 4x 9  -ray yields Split in 4 angular ranges Doppler correction ISOLDE IS475

29 Enhancement due to Octupole deformation Partial Nuclear Level scheme 225 Ra Nuclear enhancement: Radium Atom: Nuclear Structure Theory J. Engel, J. Dobaczewski et al. Figure from I. Ahmad & P. Butler, Ann. Rev. Nucl. Part.Sci.43,71(1993) Figure from R. Lucas, Europhysics news 31,71(2001)

30 Schiff moment of 225 Ra, Dobaczewski, Engel (2005) Schiff moment of 199 Hg, Ban, Dobaczewski, Engel, Shukla (2010) Skyrme ModelIsoscalarIsovectorIsotensor SIII SkM* SLy Enhancement Factor: EDM ( 225 Ra) / EDM ( 199 Hg) Closely spaced parity doublet – Haxton & Henley (1983) Large intrinsic Schiff moment due to octupole deformation – Auerbach, Flambaum & Spevak (1996) Relativistic atomic structure ( 225 Ra / 199 Hg ~ 3) – Dzuba, Flambaum, Ginges, Kozlov (2002) EDM of 225 Ra enhanced       55 keV || || Parity doublet 225 Ra: I = ½ t 1/2 = 15 d 225 Ra: I = ½ t 1/2 = 15 d from Peter Mueller

31 Laser Cooling Chart Next Species Ba Ra TRI  P

32 ● repumping off S. De, L. Willmann, 3 Oct 2007 Efficient Trapping of Barium Atoms TRI  P ● MOT signal ● Doppler-free beam signal (*100) ● MOT signal ● Doppler-free beam signal (*100) MOT MOT S. De, L. Willmann, 3 Oct 2007 > 10 6 trapped atoms > 10 6 trapped atoms  = nm 5d6p 3 D 1  = nm  = nm MOT ● repumping on ● repumping off ● repumping on ● repumping off 1 % trapping efficiency!

33 Radium – Barium Optical Trapping Radium – Barium Optical Trapping very similar level schemes – very similar leak rates  Cooled and trapped on intercombination line with Zeeman slower with Zeeman slower (Argonne: Phys. Rev. Lett. 98, , 2007) (Argonne: Phys. Rev. Lett. 98, , 2007)  ~7∙10 -7 cooling & trapping efficiency from atomic beam from atomic beam  ~ Ra ( Ra) atoms trapped  Cooled and trapped on resonance line with many laser repumping with many laser repumping (KVI: S. De, L. Willmann et al., Phys.Rev. A79,41402(R),2009) (KVI: S. De, L. Willmann et al., Phys.Rev. A79,41402(R),2009)  ~10 -2 cooling & trapping efficiency from atomic beam from atomic beam  10 6 Ba atoms trapped  method transferrable to Radium TRI  P

34 Accuracy of transition frequency: 4 MHz relative to 130 Te 2, (1)cm MHz (0.03cm -1 ) Rasmussen, Z.Phys 87, 607 (1934) Hyperfine Structure: 4198(4) MHz 4195(4)MHz (Wendt et al. Z. Phys. D4, 227 (1987)) 7s 2 1 S 0 - 7s7p 1 P 1 : Strong transition, laser cooling 130 Te 2 F = 1/2 – F’ = 3/2 F = 1/2 – F’ = 1/2 225 Radium Spectroscopy 7s 2 1 S nm 7s7p 1 P 1 7s6d 1 D F’ 3/2 1/2 F 1/2 7s7p 3 P F’ 3/2 1/2

35 1 S 0 (F=1/2) - 1 P 1 (F ’ =1/2) Δν FWHM = 30 (1) MHz 1 S 0 (F=1/2) - 1 P 1 (F ’ =1/2) Δν FWHM = 30 (1) MHz 225 Ra, 225 Radium Spectroscopy 483 nm 7s7p 1 P 1 7s6d 1 D F’ 3/2 1/2 F 1/2 7s7p 3 P F’ 3/2 1/2 Absolute Frequency: Offset from a 130 Te 2 line 627( 5) MHz (L. Willlmann et al., KVI (2010) 7s 2 1 S 0 - 7s7p 1 P 1 : strong transition, first stage cooling  Relevant input for atomic theory

36 483 nm 7s7p 1 P 1 7s6d 1 D F’ 3/2 1/2 F 1/2 7s7p 3 P F’ 3/2 1/2 from B.Santra, PhD thesis, KVI (2012)

37 7s 2 1 S 0 - 7s7p 3 P 1 : weak transition, second stage cooling Absolute Frequency: Offset from a 127 I 2 line 726( 5) MHz (L. Willlmann et al., KVI (2010) 702(30) MHz (N. D. Scielzo et al., PRA 73, (R) (2006)) F=1/2 – F’=3/ nm 7s7p 1 P 1 7s6d 1 D F’ 3/2 1/2 F 1/2 7s7p 3 P F’ 3/2 1/2  Relevant input for atomic theory 225 Radium Spectroscopy

38      1S01S0 3P13P1 Laser-cooling 3D13D1 1P11P1 Repump 100x Ra atomic beam Ra atom trap! Key 225 Ra frequencies, lifetimes measured Scielzo et al. PRA (2006) 225 Ra laser cooled and trapped! Guest et al. PRL (2007) From Peter Mueller, ANL

39 Argonne Radium EDM

40 Radium EDM Argonne 10W E=100 kV/cm (from P. Mueller)

41  Sources of Radium Isotopes  Efficient laser cooling on strong transition: 483 nm Close leaks with additional lasers demonstrated with Ba S.De et al., PRA 79, (R) (2009)  Magneto-optical trapping: 714 nm J.R. Guest et al., PRL 98, (2007) Lower trap temperatures Efficient loading to an optical dipole trap  Optical Dipole trapping Key Issues for Ra 7s 2 1 S 0 7s7p 1 P nm Cooling 7s7p 3 P 7s6d 1 D 2 7s6d 3 D nm Trapping

42 Sources & Isotopes 225 Radium (from sources) Electrochemical extraction from 229 Th source (ANL) regular filling required Long lived 229 Th source in an oven (TRI  Isotope Production Facilities ISOLDE, CERN ( flux ~ 10 9 /s) FRIB, MI, USA ( flux ~ 10 9 /s) even higher IsotopeHalf life (τ 1/2 )Nuclear spin (I) 225 Ra14.9 days1/2 223 Ra11.4 days3/2 213 Ra2.74 min1/2 Argonne National Lab Once filled with 229 Th 10  Ci

43 Radium cooling Parameter483 nm714 nm Maximum deceleration (a)330 x 10 3 m/s 2 3 x 10 3 m/s 2 Distance to stop 300 m/s (d)0.14 m15 m Doppler cooling limit (T D ) 700  K9  K Recoil limit (T R )180 nK83 nK transition leak rate 1:350 indispensible repumping 0.1 m slowing section 60 % of all atoms transition leak rate 1: m slowing section 0.06% of all atoms 0.6% with repumping

44 Heavy alkaline earth: Ba Efficient capture from atomic beam: >1% multi-color, multi level laser cooling S.De et al. PRA (2009) Alternate way pursued at Argonne Lab (Ra): < single color, two-level laser cooling Guest et al. PRL (2007)

45 Towards an experiment 7s 2 1 S 0 7s7p 1 P nm Cooling 7s7p 3 P 7s6d 1 D 2 7s6d 3 D nm Trapping Slowing laser beams 483nm + repumpers Ra Source 229 Th 225 Ra +  Ti: Sappire 966 nm Second harmonic generation (KNbO nm Semi-conductor Diode 714 nm 50mW, several lasers with offset lock Repump lasers

46 EDMs of atoms of experimental interest ZAtom[S/( e fm3)]e cm [  e cm Expt. 2 3 He Xe Seattle, Ann Arbor, Princeton,Tokyo, Mainz-PTB-HD-KVI Yb-1.93 Bangalore,Kyoto Hg-2.84Seattle Rn TRIUMF Ra Argonne,KVI Ra d n = 5 x e cm , d( 3 He)/ d n = slide from Victor Flambaum

47 Towards a Rn EDM Experiment at TRIUMF T. Chupp and C. Svensson 1. Implant 121,123 Cs into catcher foil 3. Coldfinger at LN 2 temperature to absorb the atoms locally 2. Heat foil to diffuse atoms into system 4. Warm coldfinger 5. Fill chamber with N 2 6. Push with N 2 to trap gas in cell Rn is predicted to be ~ 600 times more sensitive than 199 Hg Magnitude of EDM ~ Z 3 Radon isotopes possibly octupole deformed

48 TRIUMF FacilityDetectionS d (100 d) ISAC  anisotropy 2 x e-cm ISAC  asymmetry 1 x e-cm FRIB  asymmetry 2 x e-cm Radon-EDM Experiment TRIUMF E929 T. Chupp (Michigan) & C. Svensson (Guelph) ~ 5x for 199 Hg  /223 Rn EDM projected sensitivity Funding: NSF, DOE, NRC, NSERC Produce rare ion radon beam Collect in cell Comagnetometer Measure free precesion (  anisotropy/  asymmetry) Courtesy of Tim Chupp

49 EDMs of atoms of experimental interest ZAtom[S/( e fm3)]e cm [  e cm Expt. 2 3 He Xe Seattle, Ann Arbor, Princeton,Tokyo, Mainz-PTB-HD-KVI Yb-1.93 Bangalore,Kyoto Hg-2.84Seattle Rn TRIUMF Ra Argonne,KVI Ra slide from Victor Flambaum KVI

50  present limit d Xe < 3  ecm  goal gain 3 orders of magnitude  note d Hg < 3,1  ecm Future EDM Search from 3 He/ 129 Xe Clock Comparison W.Heil, U. Schmidt, L. Willmann et al. Mainz –Heidelberg - Groningen

51 Magnetic Field Shielded Room at PTB Berlin 6 cm 3 He (4.5 mbar ) J. Bork, et al., Proc. Biomag 2000, 970 (2000) 7 layers of magnetic shielding  residual field < 2nT LT c - SQUID magnetic guiding field  0.4  T (Helmholtz-coils)

52 3 He Free Spin-Precession Signal R d SQUID p He = 4.5 mbar P He = 15% R =2.9 cm d = 6 cm C. Gemmel et al., Eur.Phys.Jour. D57,303 (2010) 3 He: 129 Xe:  wall relaxation  limiting factor

53 3 He / 129 Xe clock comparison to get rid of magnetic field drifts 129 Xe 3 He (4,7 Hz) (13 Hz) !  B [nT] t [h] drift ~ 1pT/h   Hz/h slide from W. Heil

54 Subtraction of deterministic phase shifts I. Earth‘s rotation Phase residuals II. +  (t) spin-coupling  rem slide from W. Heil  =  He -  He /  Xe   Xe  rem =  -  Earth

55 3 He/ 129 Xe cell Pb-glass cylinder Dewar housing the LT c -SQUIDs

56 3 He, 129 Xe clocks based on free spin precession yield best limit due to long spin coherence times yield best limit due to long spin coherence times in Lorentz violating Standard Model extension (Kostelecky)  new limit on the bound neutron limiting parameter for experiment M. Burghoff et al., arXiv

57 muon EDM method for charged particles muon EDM method for charged particles

58 KVI

59 Spin precession in (electro-) magnetic field Permanent Electric Dipole Moment in a Ring

60 Muon EDM – A Parasitic Measurement 3 methods for analysis: d  < 1.8  ecm (95% C.L.) Fermilab: factor ~100 3 methods for analysis: d  < 1.8  ecm (95% C.L.) Fermilab: factor ~100 Adelmann, Kirch, Onderwater, J. Phys. G: Nucl. Part. Phys (2010)

61 Muon EDM – A Parasitic Measurement 3 methods for analysis: d  < 1.8  ecm (95% C.L.) 3 methods for analysis: d  < 1.8  ecm (95% C.L.) Adelmann, Kirch, Onderwater, J. Phys. G: Nucl. Part. Phys (2010)

62 - p. 62/57 Sikorsky S64F 12.5 T hook weight (Outer coil 8T)

63 Spin precession in (electro-) magnetic field X+X+ X+X+ Permanent Electric Dipole Moment in a Ring X+X+ X+X+ X+X+ X+X+ X+X+ X+X+

64 from CJG Onderwater

65 30y / Cs 22 min< / Fr 82.8 m / Ge H21H 3.6 m / Tm Li / Sb / La T 1/2 Reduced Anomaly a /N/N Spin JNucleus Some Candidate Nuclei for EDM in Ring Searches More complete lists: I.B. Khriplovich, K. Jungmann GSI EDM Workshop, 1999 Method works also for highly charged ions

66 International Symposiua on LEPTON MOMENTS Heidelberg, Germany 1: June 1999 Centerville, Cape Cod, MA 2: June : June : July 2010 ECT* workshops Many, many Ring EDM experimenst can work for ALL ions Up to now mostly in THEORY It’s time for an after conference party  d,p 213 Fr The Importance of Informal Mahabaleshwar !

67 Summary Atomic EDMs are experimentally accessible Atomic Physics technology EDM sensitivity scales approx. with Z 3 Relatively easy to interpret High potential : Ra, Xe … Stay tuned  Work in progress : Atoms Still yield the Best Limits !  Work in progress : Atoms Still yield the Best Limits !


Download ppt "Symmetries & Conservation Laws Symmetries & Conservation Laws Standard Model and Beyond Standard Model and Beyond Search for New Interactions Search for."

Similar presentations


Ads by Google