Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hydraulic Fracturing Design for Optimum Well Productivity Frank E. Syfan, Jr., PE, SPEE Syfan Engineering, LLC February 26, 2015.

Similar presentations


Presentation on theme: "Hydraulic Fracturing Design for Optimum Well Productivity Frank E. Syfan, Jr., PE, SPEE Syfan Engineering, LLC February 26, 2015."— Presentation transcript:

1 Hydraulic Fracturing Design for Optimum Well Productivity Frank E. Syfan, Jr., PE, SPEE Syfan Engineering, LLC February 26, 2015

2 Outline  Critical Fracture Design Parameters  Rock Mechanics  Fracture Mechanics  Fluid Systems  Proppant Selection  Case Histories:  Case A:Marcellus Shale  Case B:Eagle Ford Shale  Case C:Bakken  Case D:Cotton Valley  Summary  Conclusions 2

3 Critical Fracture Parameters Rock Mechanics 3

4 4 Critical Fracture Parameters Fracture Mechanics

5  Fluid & Additive Design  Slickwater DOESN’T Work Everywhere!  Chemical and Fluid Compatibility  Gel Stability and Breaker Tests  Temperature Ranges  Nano-Fluid Non-Emulsifiers  Polyacrylamide Breakers  ISO , , Critical Fracture Parameters Fluid Systems

6 6 Critical Fracture Parameters Proppant Selection  -Qtz Ceramic Resin Coated

7 7 Incr. Cost & Performance Intermediate Premium Economy Intermediate Bauxite Incr. Closure Pressure, Kpsi RC Ceramics RC  -Qtz Ceramics  -Qtz LWC Critical Fracture Parameters Proppant Selection

8  The Ideal Proppant  Crush resistance / high strength  Slightly deformable, not brittle  No embedment  Low specific gravity  Chemical resistance  No flowback  Complete system compatibility  Ready availability  Cost effective  Reality: The Ideal Proppant Doesn’t Exist!! 8 Critical Fracture Parameters Proppant Selection

9  Infinite vs. Finite Conductivity  Formation Permeability  Depth/Closure Stress  Formation Ductility/Embedment  What is Brinell Hardness? 9 Critical Fracture Parameters Proppant Selection

10  Median Particle Diameter  Cyclic Stress  Multi-Phase Flow  Proppant Flowback  Non-Darcy Effects  Beta Factor 10 Critical Fracture Parameters Proppant Selection

11  Fracture Conductivity – Wk f  Single Most Important Factor to Achieve!  Dimensionless Conductivity  Fracture Flow Capacity Divided by Reservoir Flow Capacity.  Considered “Infinite” the fracture deliverability exceeds reservoir deliverability with negligible pressure loss. 11 Critical Fracture Parameters Conductivity

12 12 Critical Fracture Parameters Conductivity: McGuire & Sikora (1960)  Dimensionless Productivity Index vs. Dimensionless Conductivity  (Square Reservoir)  Dimensionless Productivity Index vs. Dimensionless Conductivity  (Rectangular Reservoir – 1/10)

13 13 Critical Fracture Parameters Fines 12/20 Hickory/Brady – 6,000 psi Intermediate Strength Ceramic – 8,000 psi RC Proppant – 8,000 psi StimLab Proppant Consortium, 1997 – 2006

14  Brown vs. Northern White?  API 19C (ISO ) Guidelines Are Specific!!  Sieve Distribution  Krumbein Factors  Turbidity  Acid Solubility  K-Value (Also Called Crush Resistance)  Point Where Fines >10.0%  Relative Number Only!! 14 Critical Fracture Parameters Depth/Closure Stress

15  SPE (2003)  Particle Sieve Distribution Variations 15 Field Samples – 20/40 N. 25X mm mm Courtesy: PropTester – Houston TX Critical Fracture Parameters Median Particle Diameter

16 16 Critical Fracture Parameters Median Particle Diameter Courtesy: PropTester – Houston TX Flow Capacity Decreases MPD = mm MPD = mm Each Proppant Sample Passes ISO Guidelines!

17 17 Critical Fracture Parameters Median Particle Diameter Courtesy: PropTester – Houston TX Conductivity (md-ft) 100 1,000 10,000 2,0004,0006,0008,00010,000 Closure Stress (psi) Published Data MPD = mm Actual Data MPD = mm

18  A Quantity Relating Pressure Loss In The Fracture to Liquid or Gas Production Rates (velocities).  Governed by Forchheimer’s Equation  Darcy Effects  Non-Darcy Effects Inertial Effect  2 - Dominate! PSD Effects Beta 18 Critical Fracture Parameters Beta Factor

19 Outline  Critical Fracture Design Parameters  Rock Mechanics  Fracture Mechanics  Fluid Systems  Proppant Selection  Case Histories:  Case A:Marcellus Shale  Case B:Eagle Ford Shale  Case C:Bakken  Case D:Cotton Valley  Summary  Conclusions 19

20 Case History A: Marcellus Shale 20 Reservoir & Fracture Parameters DescriptionValue Reservoir Depth, ft7.876 Reservoir Thickness, ft162 Hydrocarbon Porosity, %4.2 Pore Pressure, psi4.726 Temperature, o F175 Drainage Area, ac80 Aspect Ratio (x e /y e )¼ BHFP, psi1,450 – 530 Lateral Length, ft2,100 Number of Stages7 Clusters per Stage5 Fracture & Reservoir Match DescriptionValue Reservoir Permeability, nD583.0 Permeability-Thickness, md-ft0.094 Propped Length, ft320 Fracture Conductivity, md-ft3.77 Dimensionless Conductivity20.2 Choked Skin, dim Equivalent Fractures6 SPE

21 Case History A: Marcellus Shale 21 Predicted Gas Production RatePredicted Cum. Gas Production SPE

22 Case History A: Marcellus Shale SPE

23 Case History B: Eagle Ford Shale Reservoir & Fracture Parameters DescriptionValue Reservoir Depth, ft10,875 Reservoir Thickness, ft283 Hydrocarbon Porosity, %5.76 Pore Pressure, psi8,350 Temperature, o F285 Drainage Area, ac80 Aspect Ratio (x e /y e )¼ BHFP, psi3,900 – 1,500 Lateral Length, ft4,000 Number of Stages10 Clusters per Stage4 Fracture & Reservoir Match DescriptionValue Permeability-Thickness, md-ft Propped Length, ft131 Fracture Conductivity, md-ft0.86 Dimensionless Conductivity382 Choked Skin, dim Equivalent Fractures40 SPE

24 Case History B: Eagle Ford Shale Predicted Gas Production RatePredicted Cum. Gas Production SPE

25 Case History C: Bakken Shale Reservoir & Fracture Parameters DescriptionValueDescriptionValue Reservoir Depth, ft9,881Drainage Area, ac640 Reservoir Thickness, ft46BHFP, psi1,500 Rsvr. Permeability,  D 0.002Effective Frac. Length, ft420 Porosity, %5.0Frac. Conductivity, md-ft200 Pore Pressure, psi4,900Dimensionless Conductivity238 Temperature, o F209Lateral Length, ft5,000 Rsvr. Compressibility, 1/psi2.0 E-05Transverse Fractures12 Rsvr. Viscosity, cP0.30 SPE

26 Case History C: Bakken Shale Predicted Oil Production RatePredicted Cum. Oil Production 26 SPE

27 Case History D: E. TX Cotton Valley DescriptionValueDescriptionValue Reservoir Depth, ft9,000BHFP, psi1,500 Reservoir Thickness, ft100Effective Frac. Length, ft1,500 Rsvr. Permeability,  D 0.001Frac. Conductivity, md-ft114 Porosity, %7.0Dimensionless Conductivity76 Pore Pressure, psi6,000Lateral Length, ft2,000 Temperature, o F285Transverse Fractures7 Drainage Area, ac640 Reservoir & Fracture Parameters SPE

28 Case History D: E. TX Cotton Valley Predicted Gas Production RatePredicted Cum. Gas Production SPE

29 Outline  Critical Fracture Design Parameters  Rock Mechanics  Fracture Mechanics  Fluid Systems  Proppant Selection  Case Histories:  Case A:Marcellus Shale  Case B:Eagle Ford Shale  Case C:Bakken  Case D:Cotton Valley  Summary  Conclusions 29

30 Summary  Proper fracture design and ultimately, fracture optimization, cannot and will not happen without sound engineering practices!  Without sound engineering, initial production rates, ultimate recovery, NPV, and rate-of-return will be compromised.  At the End of the Day…… SPE

31 Conclusions  Understanding the rock mechanics is essential to consistently achieving high conductivity fractures.  McGuire and Sikora (1960) holds true regardless of reservoir type and ultimately dictates reservoir and production performance.  Fracture conductivity and dimensionless fracture conductivity ultimately govern the initial production rates and ultimate recoveries regardless of the type of reservoir lithology. SPE

32 Conclusions  Case A (Marcellus Shale) and Case B (Eagle Ford Shale) matches, illustrate the importance of achieving high conductivity transverse fractures in a horizontal wellbores.  Increasing fracture conductivity, regardless of reservoir type, results in a significant positive impact on ROR and NPV. SPE

33 THANK YOU FOR YOUR TIME AND TO THE FORT WORTH SPE SECTION FOR INVITING ME TO MAKE THIS PRESENTATION. QUESTIONS?? 33


Download ppt "Hydraulic Fracturing Design for Optimum Well Productivity Frank E. Syfan, Jr., PE, SPEE Syfan Engineering, LLC February 26, 2015."

Similar presentations


Ads by Google