Presentation is loading. Please wait.

Presentation is loading. Please wait.

Earths Interior.  Geology : the study of planet Earth  Geologists study the processes that create Earth’s features and search for clues about Earth’s.

Similar presentations

Presentation on theme: "Earths Interior.  Geology : the study of planet Earth  Geologists study the processes that create Earth’s features and search for clues about Earth’s."— Presentation transcript:

1 Earths Interior

2  Geology : the study of planet Earth  Geologists study the processes that create Earth’s features and search for clues about Earth’s history  Geologists have to make predictions about what the Earth’s interior is made of by making indirect observations of seismic waves  Forces beneath the Earth’s surface change the Earth’s appearance. There are two types of forces:

3 Constructive: forces that build up mountains and landmasses Destructive: forces that destroy mountains and other features of land

4  Continents: the seven great landmasses surrounded by oceans  the seven continents:  1. North America  2. South America  3. Africa  4. Europe  5. Asia  6. Australia  7. Antarctica

5  Use seismic waves : vibrations that travels through Earth, carrying the energy released during an earthquake  determine the speed and path of these waves to reveal the inner Earth’s structure


7 Crust : Layer of rock that forms Earth’s outer skin (made of Oxygen, Silicon, Aluminum, Calcium, Iron, Sodium, Potassium and Magnesium) Includes soil and water 8-40 km thick Oceanic Crust: crust beneath the ocean Thin layer of crust Made of- basalt: dark dense rock with a fine texture Continental Crust: crust that forms the continents Thicker layer of crust Made mainly of granite, which then weathers and redeposits into many sedimentary and metamorphic rocks

8 Mantle: a layer of hot rock under the Earth’s crust (made of a material called peridotite which is high in iron and magnesium)  Lithosphere: a rigid layer made up of the uppermost part of the mantle and the crust; about 100km thick- (tectonic plates)  Under the Lithosphere is a layer of hot rock  Temperature and pressure in the mantle increase with depth  Asthenosphere: thick, soft material that flows in the mantle; about 3,000km thick; moves in a convection current


10 Core : innermost layer of Earth; consists of 2 parts (made of iron and nickel) 3. Outer Core layer of molten metal that surround the inner core Behaves like a thick liquid Is under enormous pressure 4. Inner Core Dense ball of solid metal Extreme pressure makes it a solid

11  The Earth has a magnetic field that is caused by the inner core spinning within the outer What is this magnetic field called?

12  The crust is a very thin layer compared to the others.

13 We already know that over time, the Earth’s crust cooled. The crust is thin, relatively, varying from a few tens of kilometers thick beneath the continents to less than 10 km thick beneath the oceans. The crust and upper mantle together constitute the lithosphere, which is typically km thick and is broken into large plates. These plates sit on the asthenosphere. The asthenosphere is kept plastic largely through heat generated by radioactive decay. This heat source is relatively small, but nevertheless, because of the insulating properties of the Earth's rocks at the surface, this is sufficient to keep the asthenosphere plastic in consistency.

14 Heat Sources in the Earth 1. Heat from the early accretion and differentiation of the Earth u still slowly reaching surface 2. Heat released by the radioactive breakdown of unstable nuclides

15 Heat Transfer 1. Radiation 2. Conduction 3. Convection


17  If you look at a map of the world, you may notice that some of the continents could fit together like pieces of a puzzle.

18  The Earth’s crust is divided into 12 major plates which are moved in various directions.  This plate motion causes them to collide, pull apart, or scrape against each other.  Each type of interaction causes a characteristic set of Earth structures or “tectonic” features.  The word, tectonic, refers to the deformation of the crust as a consequence of plate interaction.


20  Below the lithosphere (which makes up the tectonic plates) is the asthenosphere.

21  “Plates” of lithosphere are moved around by the underlying hot mantle convection cells


23  Divergent  Convergent  Transform Three types of plate boundaries

24  Spreading ridges  As plates move apart new material is erupted to fill the gap Divergent Boundaries

25 Age of Oceanic Crust Courtesy of

26  Iceland has a divergent plate boundary running through its middle Iceland: An example of continental rifting

27  There are three styles of convergent plate boundaries  Continent-continent collision  Continent-oceanic crust collision  Ocean-ocean collision Convergent Boundaries

28  Forms mountains, e.g. European Alps, Himalayas Continent-Continent Collision

29 Himalayas

30  Called SUBDUCTION Continent-Oceanic Crust Collision

31  Oceanic lithosphere subducts underneath the continental lithosphere  Oceanic lithosphere heats and dehydrates as it subsides  The melt rises forming volcanism  E.g. The Andes Subduction

32  When two oceanic plates collide, one runs over the other which causes it to sink into the mantle forming a subduction zone.  The subducting plate is bent downward to form a very deep depression in the ocean floor called a trench.  The worlds deepest parts of the ocean are found along trenches.  E.g. The Mariana Trench is 11 km deep! Ocean-Ocean Plate Collision


34  Where plates slide past each other Transform Boundaries Above: View of the San Andreas transform fault


Download ppt "Earths Interior.  Geology : the study of planet Earth  Geologists study the processes that create Earth’s features and search for clues about Earth’s."

Similar presentations

Ads by Google