Presentation is loading. Please wait.

Presentation is loading. Please wait.

Horizontal Alignment TS4447 Highway Geometric Design.

Similar presentations


Presentation on theme: "Horizontal Alignment TS4447 Highway Geometric Design."— Presentation transcript:

1 Horizontal Alignment TS4447 Highway Geometric Design

2 Horizontal Alignment  Minimum Radii  Horizontal Curve Full Circle (FC)  Tugas 3 Spiral Circle Spiral (SCS)  Tugas 4 Spiral Spiral (SS)  Tugas 4  Sight Distance on Curve  Tugas 5 Stopping Sight Distance (SSD) Passing Sight Distance (PSD)  Widening on Curve  Tugas 5  Superelevation Diagram  Tugas 6  Stationing  Tugas 6

3 R = V 2 /127(e+f) Dij  Ti + Tj Design Classification Design Type & Class Design Speed Design Vehicles Cross Section B FC / SCS / SSR’ << R A

4 BA Widening on Curve Sight Distance on Curve Superelevation Diagram Stationing

5 R min = V 2 / 127 ( e + f ) R  minimum radii (m) V  design speed (kph) e  superelevation (%) f  side friction

6 Superelevation

7 Tiga Macam Lengkung Horisontal 1.Full Circle (FC) 2. Spiral-Circle-Spiral (SCS) 3. Spiral-Spiral (SS) TC CT TS SC CS ST TS ST SS PI

8

9

10

11 Geometric Design … normally seeks to ensure uniformity of alignment and maximum levels of safety and comfort for drivers using the road, within given economic constraints. Compromise are inevitable to achieve an acceptable solution and not all objectives can be fully met. Often, however, it is possible to improve road safety implications of design features are considered at the design stage.

12

13

14

15

16 TCCT

17 Potongan Melintang Rencana Tipe Jalan: Kolektor Sekunder Kecepatan Rencana: 40 Kph Kendaraan Rencana: Single Unit (SU)

18 Minimum Radii Not Required Transition Section [RSNI T p.31]. Vr (kph) Rmin (m) Vr (kph) Rmin (m)

19 Azimuth, Intersection Angle, distance between PI

20

21

22

23 Panjang Bagian Lengkung Minimum Panjang Bagian Lengkung Minimum [RSNI p.27 table.11] V R (kph)L (m)

24 R FC Minimum Sesuai Syarat R FC Minimum Sesuai Syarat [RSNI p.27 table.11]

25 Check d ij  Ti + Tj

26 Azimuth, Intersection Angle, distance between PI

27 Latihan Pilih 2-3 PI yang bersebelahan, Coba desain tikungan pada PI tersebut dengan jenis FC.

28 Tugas 3 1.Azimuth, , distance between PI 2.Minimum radius 3.Curve type FC 4.Stopping Sight Distance 5.Widening on curve 6.Stationing 7.Superelevation diagram 8.AutoCAD drawing Dikumpulkan via , Minggu 23 Ags 09 (pk. 12:00) dan CDRW, Senin 24 Ags 09 (pk. 12:00) di TU Sipil

29 Tiga Macam Lengkung Horisontal 1.Full Circle (FC) 2. Spiral-Circle-Spiral (SCS) 3. Spiral-Spiral (SS) TC CT TS SC CS ST TS ST SS PI

30 FC  SCS

31 T FC < T SCS

32

33 FC vs SCS

34

35 CLOTHOID (Spiral) CURVE

36 TRANSITION (Spiral) CURVE To provide a natural, easy-to-follow path for drivers, where centrifugal force increase/decrease gradually. To provide a convenient desirable arrangement for superelevation run-off. To provide a flexible change in lane-width. To enhanced the appearance of the highway, to avoid the noticeable breaks at the beginning and ending of circular curves

37 Tangent Runout Tangent Runout is the general term denoting the length of highway needed to accomplish the change in cross slope from a normal section to a section with the adverse cross slope removed, or vice- versa. 2% 0% 2% 0%

38 Superelevation Runoff Superelevation Runoff, is the general term denoting length of highway needed to accomplish the change in cross slope from a section with adverse crown removed to a fully superelevation section, or vice-versa. 2% 0% 2% 0%

39 Tangent Runout Superelevation Runoff TR menambah jarak antar TS !!!

40 Check d ij  Ti (+TR) + Tj (+ TR)

41 Minimum Length of Transition Sections Minimum Maneuver Time for Traveling on Transition Curve [RSNI T p.30]. L S = (Vr/3,6) x t Vr  design speed (km/h) t  running time (2 sec)

42 Minimum Length of Transition Sections Minimum Length of Superelevation Runoff [RSNI T p.30]. L S = W 1/  (e d + e NC ) L S = W 1/  e d  AASHTO   relative slopes ratio (m/m) W  road width (m) e NC  normal cross fall (%) e d  design superelevation (%)

43 Tangent Runout Superelevation Runoff TR menambah jarak antar TS !!!

44

45 Full-Circle, Normal Cross-Fall Spiral-Circle-Spiral or Spiral-Spiral Reverse Cross-Fall or Superelevation 2%

46 FC min 

47

48

49 Spiral-Circle-Spiral (SCS)

50 Check d ij  Ti (+TR) + Tj (+ TR)

51 SCS vs SS

52

53 Tiga Macam Lengkung Horisontal 1.Full Circle (FC) 2. Spiral-Circle-Spiral (SCS) 3. Spiral-Spiral (SS) TC CT TS SC CS ST TS ST SS PI

54

55

56 Spiral-Spiral (SS)

57 Ls max

58 Ls min

59 Ls SS

60 Check d ij  Ti (+TR) + Tj (+ TR)

61 Latihan Pilih 1-2 PI yang tidak memenuhi syarat desain FC, Coba desain tikungan pada PI tersebut dengan jenis SCS atau SS.

62 Tugas 4 1.Azimuth, , distance between PI 2.Minimum radius 3.Curve type SCS & SS 4.Stopping Sight Distance 5.Widening on curve 6.Stationing 7.Superelevation diagram 8.AutoCAD drawing Dikumpulkan via , Minggu 30 Ags 09 (pk. 12:00) dan CDRW, Senin 31 Ags 09 (pk. 12:00) di TU Sipil

63 BRAKING DISTANCE

64 S = 15.9 d x f ±e x B% 100% Braking – Four Wheel Lock-up Skid or full ABS – Where f = 0.75 and S = 80km/hr Front Brakes Only – 70%d = 48 meters Rear Brakes Only – 30%d = 112 meters One Front Brake – 35%d = 96 meters One Back Brake – 15%d = 225 meters !!!

65

66

67 STOPPING SIGHT DISTANCE [RSNI T p.22]

68 Potongan Melintang Rencana Tipe Jalan: Kolektor Sekunder Kecepatan Rencana: 40 Kph Kendaraan Rencana: Single Unit (SU)

69 Minimum Stopping Sight Distance Minimum Stopping Sight Distance [Table 10 p. 23 RSNI 2004] Design Speed (kph) SSD (m) Design Speed (kph) SSD (m)

70 PASSING SIGHT DISTANCE

71 Sight Distance on Horizontal Curve

72

73 [RSNI T p.23]

74 Potongan Melintang Rencana Tipe Jalan: Kolektor Sekunder Kecepatan Rencana: 40 Kph Kendaraan Rencana: Single Unit (SU) AB

75 Sight Distance on Horizontal Curve

76

77

78 Widening on Curve

79 A traffic lane on a curve must be widened because: The rear wheels do not track the front wheels Vehicle’s front overhang requires an additional lateral space Difficulty of driving on curves justifies wider lateral clearance

80 Widening on Curve

81 W n  width of traveled way on tangent, m. U  track width of vehicle (out-to-out tires), m. C  lateral clearance per vehicle assumed 0,6/0,75/0,9 for W n of 6,0/6,6/7,2 respectively F A  with of overhang, m. Z  extra width allowance for difficulty of driving on curves, m. u  track width on tangent (out-to-out) 2,6m. R  radius of centerline of 2-lane highway, m. L  wheelbase, m. A  front overhang, m. V  design speed of highway, km/h.

82 Widening on Curve

83 Potongan Melintang Rencana Tipe Jalan: Kolektor Sekunder Kecepatan Rencana: 40 Kph Kendaraan Rencana: Single Unit (SU)

84 Latihan Pilih 2-3 PI, Periksa syarat Stopping Sight Distance dan kebutuhan Widening on Curve.

85 Tugas 5 1.Azimuth, , distance between PI 2.Minimum radius 3.Curve type 4.Stopping Sight Distance 5.Widening on curve 6.Stationing 7.Superelevation diagram 8.AutoCAD drawing Dikumpulkan via , Minggu 6 Sep 09 (pk. 12:00) dan CDRW, Senin 7 Sep 09 (pk. 12:00) di TU Sipil

86 Superelevation

87 Superelevation

88 Superelevation

89

90 Superelevation Diagram e max enen cl TSSCCSST Ls LcLs SCS - Right Turn

91 Latihan Pilih 2-3 PI dengan jenis tikungan SCS/SS belok Kanan/Kiri Gambarlah (skets) Diagram Superelevasi pada PI tersebut.

92 Stationing

93 Stationing [cont’d]

94 Tugas 6 1.Azimuth, , distance between PI 2.Minimum radius 3.Curve type 4.Stopping Sight Distance 5.Widening on curve 6.Stationing 7.Superelevation diagram 8.AutoCAD drawing Dikumpulkan via , Minggu 13 Sep 09 (pk. 12:00) dan CDRW, Senin 14 Sep 09 (pk. 12:00) di TU Sipil


Download ppt "Horizontal Alignment TS4447 Highway Geometric Design."

Similar presentations


Ads by Google