Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modeling Tools to Support Navy Manpower Requirements Analysis Briefing to RADM Harvey 4 September 2002.

Similar presentations


Presentation on theme: "Modeling Tools to Support Navy Manpower Requirements Analysis Briefing to RADM Harvey 4 September 2002."— Presentation transcript:

1 Modeling Tools to Support Navy Manpower Requirements Analysis Briefing to RADM Harvey 4 September 2002

2 2 Objectives of the Briefing Provide background on the use of modeling and simulation to forecast manpower requirements Present the advantages of manpower modeling approach over traditional approaches to manpower requirements Present three immediately available technologies that could be incorporated Discuss future development of modeling and simulation to augment NMRS

3 3 Background on Modeling and Simulation for Manpower Requirements Analysis Industry has used modeling and simulation to evaluate manpower needs for several decades DoD began developing methods for modeling human systems in the 1970s Army MANPRINT program adopted modeling and simulation-based tools for determining operational manpower requirements in late 1980s/early 1990s –Accredited modeling as a basis for manpower requirements analysis during design in 1995 Navy began research in the use of modeling for manpower analysis in the 1990s

4 4 Background on Modeling and Simulation for Manpower Requirements Analysis DD 21/(X) changed the landscape of the systems engineering process with respect to manpower modeling in the DoD –Manpower was a KPP –Manpower issues had to be tied to operational consequences –DD 21/(X) was an SBA (simulation-based acquisition) –DD 21/(X) was a revolutionary system, so old approaches (e.g., HARDMAN) would not work Forecasting manpower requirements accurately, tracking them to system performance requirements, and doing it on a sound engineering basis was a necessity!

5 5 Background on Modeling and Simulation for Manpower Requirements Analysis The manpower modeling ideas and technology from DD 21/(X) matured during several Navy R&D efforts –ONR Manning Affordability Initiative Watchstander Model –SEAIT/SMART3 –Total Crew Model The ideas and technology became a part of the systems engineering toolkit for other programs –Coast Guard Deepwater –JCC(X) –AEGIS Open Architecture –TSI approach to modernization

6 6 Advantages of Modeling and Simulation for Manpower Requirements Determination Full traceability between mission and manpower requirements –“If we man to this level, we can expect this mission performance” Considers and evaluates the “peaks and valleys” of the need for manpower Straightforward ways to trade between at-sea and in-port workload concepts Transparent and understandable –Ability to trace manpower-induced problems to the source, and identify the impact of possible solutions A solid link to systems engineering and design Tools are available, mature, and low cost or free Significant validation has already been conducted

7 7 Mission duration Number required What Many Manpower Models Assume

8 8 What Drives Manpower and Ship Performance Mission duration Number required

9 9 Advantages of Modeling and Simulation for Manpower Requirements Determination Full traceability between mission and manpower requirements –“If we man to this level, we can expect this mission performance” Considers and evaluates the “peaks and valleys” of the need for manpower Straightforward ways to understand at-sea and in-port workload Transparent and understandable –Ability to trace manpower-induced problems to the source, and identify the impact of possible solutions A solid link to systems engineering and design Tools are available, mature, and low cost or free Significant validation has already been conducted

10 10 Proposed Improvements Complement existing NMRS algorithms / calculations data Strengthen the PSMD development process Provide meaningful trade space analysis for the acquisition process Ensure : –CONSISTENTLY Apply Navy Manpower and personnel policies Apply uniform parameters and allowances Combine Watch and Workload data –UNIFORMLY Translate workload drivers Optimize requirements within specified boundaries Determine minimum skill and quality Reflects: Scenario based wartime and peacetime missions Warfare sponsor requirements (ROC/POE)

11 11 Objectives of Manpower Modeling Provide quantitative metrics in a controlled simulation to support system engineering and trade space analysis Support manning optimization Existing Tools –Watchstander Model (WSM) Detailed watchstander operations during dynamic scenario execution –Total Crew Model (TCM) Detailed crew activity and fatigue data –SMART Build 3 Detailed maintenance and skill set data

12 12 Tenets of Optimized Manning Maximize Crew Performance –Identify “Best” operator to perform task Reduce Workload –Technology Insertion –Process Re-engineering –Capability Change –Re-allocate from sea to shore Reduced Workload Does not Equate Directly to Eliminated Billets –SMD Conditional Watches –Collateral Duties –Policy Requirements Watchstanding Corrective and Facilities Maintenance Own Unit Support Special Evolutions QoL Services Preventative Maintenance Req’d Admin Damage Control

13 13 Underlying Approach: Task Network Modeling

14 14 Watchstander Model (Cognitive-level)

15 15 Watchstander Model Model Explanation –Micro-level, 1 second time slices –Simultaneous mission execution –Team definition and workload calculation –System model with human as the focus Process –Task analysis –Build Task Flows –Allocate Sailor/Auto to task –Scenario –Run simulation –Analyze results Analysis Metrics –Workload Instantaneous < 100% 3 minute running average < 95% 1 Hour running average 20% –Goal 65% –No lost mission critical tasks Previous Projects –DD 21 / (X) –AMO –DEEPWATER –FORCEnet –DCPM (DC Personnel Model) –RSA

16 16 Use SME and system engineer inputs Detailed workload analysis for watchstanders. –CIC –Engineering –Damage Control –Bridge –Food Service Design tool for CS engineers. Tests multiple design variants before committing. Evaluates mission simultaneity Provides empirical data identifying the relationships between track density and crew workload. Watchstander Model

17 17 Demo

18 18 Total Crew Model

19 19 Total Crew Model Rapid trade space analysis through optimization of relevant outcomes asking “What if…” questions –Ship capabilities (can the crew perform all evolutions?) –Evaluate impact of system design changes on crew workload –Evaluate impact of ship’s schedule on crew fatigue –Evaluate resource availability on mission success –Target limited resources for best results –Training requirements for billets –Quality of life issues Personal time, work hours and type of work, sleep, meals

20 20 Total Crew Model Model Explanation –Macro-level, 15 minute time slices –Simultaneous event execution –Crew workload versus Navy staffing standards –Test crew size against mission execution –DDG 85 baseline WQ&SB & ship class SMD working papers Process –Define evolutions/events –Define priority matrix –Build task flow –Assign sailors to evolutions –Randomize special events –Run simulation –Analyze results Analysis Metrics –Ships schedule –Mission accomplishment –Crew activity data Sleep = 8 hrs/day Personal Time = 2.5 hrs/day Meals = 1.5 hrs/day Work = 12 hrs/day –81 hours weekly –Fatigue Previous Projects –DEEPWATER –DD21 / (X) –FORCEnet –DCPM

21 21 Crew Weekly Workload Summary Billet No. Billet Title Rank/ Rate Primary CP SD Spec EV TrgTotals 0101W/S-1LT540.915.901080.7 Billet No. Primary 0101Watch Planning 42 12 Cleaning & Preservation Personal Public CO/XO 0.9 0 0 Secondary Duties Pers Mgmt Cts/Bds/Mtg Qtrs/Ass’y 7.6 7.8 0.5 Training Formal PFT 7 3 HSI Models Static Model, Preliminary Ship Manpower Document Workload = FM+OM+PM+CM+OUS+PA+SD+TR = 81hrs/week PSMD Worksheet Traces Each Billet Back to Workload Components Zero-based Manning Assignments - –Every Sailor has a specified reason for being a part of the crew Detailed Documentation –For DD21 the Manpower Analysis Report –For DDG 79 the NAVMAC Working Papers

22 22 Total Crew Model Components Daily Routine –Watchstanders –Maintainers –Food Service –Admin –Schedules depend on current readiness condition. Crew Assignments (WQ&SB) –Assignment of billets to evolutions. (Resources sheet) –Rules defining personnel requirements for evolutions. (Logic sheet) Trump Matrix –Contains all possible pair wise comparisons for task priorities. Scenario –Normal routine and authored recurring and infrequent evolutions. –Usually > 10 days to ensure compounded fatigue is captured.

23 23 Modeled as series of task networks Each crewmember belongs to a home network Evolutions are scheduled in the model event queue to occur at a scripted times Evolutions use the WQ&SB and the trump matrix to select crew members Daily Routine Daily Routine Watch Sections 1, 2, & 3 Day Schedules Daily Routine & Evolution Scheduling Scripted Evolution Schedule Scripted Evolution Schedule

24 24 Crew members are designated for each evolution Specific rules are given for selecting from several crew members Each evolution & routine schedule event is compared to each other evolution for prioritization A trumping evolution must trump all scheduled tasks for crew member for the duration of the evolution Sailor Assignment & Trump Matrix WQ&SB Choose most rested HCO Choose most rested HCO Choose most rested LSO Choose most rested LSO Trumping Task Evolution Priority Matrix Evolution Priority Matrix

25 25 Fatigue Degradation Equation Circadian Component Combined Degradation Linear Awake Degradation & Parabolic Sleep Recovery Linear Awake Degradation & Parabolic Sleep Recovery Awake Asleep

26 26 Work Personal Needs Sleep Total Crew Model Output Examples: Fatigue & Total Hours Breakdown Exhausted Normal Micro sleep begins ~ 9 Micro sleep increases in duration & frequency as fatigue climbs

27 27 – Evolution Delays/Failures Total Crew Model Mission Data – Successful Evolutions

28 28 TCM Validation Effort Phase I (to be conducted onboard USS Milius) –Navy’s current optimal manning experiment (OME) DDG –Test actual data against model predicted data Mission schedule Mission effectiveness Crew assignments Crew fatigue Phase II (to be conducted a non-experimental ship) –For further validation –Control

29 29 SMART B3 Model Model Explanation –PM, CM – Based on equipment usage –FM, OUS – Scheduled (can be deferred) –Stochastic Operational Functions/Tasks –Function Task Skill Requirements –Job (Rank/Rating) skills and abilities Process –Define System Parameters (Equipment, Compartments, Maintenance Actions) –Scenario Development (GANTT Charting feature) Function/Task analysis Build Task Flows –Allocate job/auto to tasks –Run simulation/Analyze results Analysis Metrics –Skill Usage (average and over time) –Crew Requirement –Utilization (average and over time) –Operational and Directed Manhour Requirements –Maintenance Hit Matrix –Personnel Conflicts –Crew Composition –Cost Data Navy Projects –Currently being integrated with Manpower Analysis and Prediction System (MAPS) –Navy owned

30 30 Operational & Maintenance manpower Focus on skills needed to perform tasks Requirements based –Driven from the bottom-up –Assigned to jobs Apply iterative, “what-if” analytical approach SMART Build 3 Features

31 31 SMART B3 Challenge BESTWhat is the BEST crew composition for a new system? – Skills – Size – Cost Complications – Early answers required – Fast turn-around required – Range of missions and environments Minimize cost Minimize crew size Minimize number of different jobs Minimize workload

32 32 Building SMART B3 – The Pieces Ship Manpower Analysis and Requirement Tools (SMART) Working Together Human Performance Modeling Skill and Ability Taxonomy To Evaluate New Acquisitions and Evolving Manning Concepts for Legacy Ships Existing Manpower Ship Data & Maintenance Models

33 33 SMART B3 Skill Taxonomy Based on taxonomy work by Edwin A. Fleishman 50 different skills and abilities grouped into 8 different categories Scales anchored with behavioral examples Communication Visual Auditory Conceptual Speed-Loaded Reasoning Fine Motor Gross Motor

34 34 COMET Cost Data PMS Preventive Maintenance Data SMD Directed Manpower FMWAP Facilities Maintenance JASS KSA Data MAPS Watch Station & ‘High Driver’ Man-hour Requirements

35 35 Sample Build 3 Results Overall skill usage –By run & job –8 Major Categories Skill usage over time –View selected skills/abilities (1-4) for any one job Crew Requirement –Comparison of number personnel used to number available Utilization –Total & Over Time by Job

36 36 Model Summary Watchstander Model –Micro-level design tool. –Detailed workload analysis for watchstanders. –Tests multiple design variants before committing. –Provides empirical data on low level task and function performance. Total Crew Model –Macro-level design tool. –High-level workload and crew activity analysis for entire ship’s crew. –Considers fatigue and crew resiliency/performance. –Identifies manpower resource drivers. –Provides empirical data identifying the relationships between manpower, scenarios, and performance. SMART B3 –Focus on mixing the jobs that the crew does to optimize different aspects of ship manning. –Includes sophisticated maintenance modeling capability.

37 37 Model Interactions TCM WSMSMART3 jobs billets? task performance reallocate tasks

38 38 Modeling & Methodology Result Influences Total Ownership Cost Technology/ Innovation Effect on Functions Crew Hypothesis: # & Skill Mix Development $ Procurement $ Installation $ Maintenance Labor Spares, etc. Other TSIT Analysis Total Ownership Cost RDT&E Acquisition Life Cycle Operations & Support Design and Construction Indirect Manpower Other Personnel/ Infrastructure Personnel $ Training $ Manpower Modeling and Associated Analysis Number of Crew Skill Rqmt Etc.

39 39 Advantages of Modeling and Simulation for Manpower Requirements Determination Full traceability between mission and manpower requirements –“If we man to this level, we can expect this mission performance” Considers and evaluates the “peaks and valleys” of the need for manpower Straightforward ways to trade between at-sea and in- port workload concepts Transparent and understandable –Ability to trace manpower-induced problems to the source, and identify the impact of possible solutions A solid link to systems engineering and design Tools are available and mature Significant validation has already been conducted


Download ppt "Modeling Tools to Support Navy Manpower Requirements Analysis Briefing to RADM Harvey 4 September 2002."

Similar presentations


Ads by Google