Download presentation

Presentation is loading. Please wait.

Published byLaila Alsbury Modified over 3 years ago

1
Introduction to PROLOG ME 409 Lab - 1

2
Introduction to PROLOG

3
Data Objects

4
Atoms Strings of letters, digits, underscore character starting with lower case letter: sarah_jones, x25, x__y, x_yAB String of special characters:, ===>, …. Strings of characters enclosed in single quotes: ‘India’, ‘Tom’

5
Data Objects Numbers Include integers and real numbers 1, 3131, -0.0035, 3.14 Variables String of letters, digits and underscore characters that starts either with an upper-case letter or with an underscore: Y, Child, _a23, Student_List

6
Data Objects Structures Objects that have many components Components can themselves be structures Functor is used to combine components into single structure date(1, jan, 2007), date(Date, Month, 2007) date(31, cat, -4.3), segment(point(1,1),point(3,3)) Functors are recognized by: Name Number of arguments (Arity)

7
Data Objects Predicate A predicate consists of a head and a number of arguments Is a function which returns true/false For example: father(sam, pat). %sam is father of pat

8
Clauses Facts Declare things that are unconditionally true Have a head and empty body Examples: parent( tom, bob). % tom is parent of bob likes(joe,dogs). % joe likes dogs

9
Clauses Rules Declare things (predicates) that are true depending on a given condition Have a non-empty body Example: mother(X,Y):-parent(X,Y), female(X). X is mother of Y if X is parent of Y and X is female

10
Clauses Recursive rules Example Rule 1: predecessor(X,Z):- parent (X,Z). Rule 2: predecessor(X,Z):- parent(X,Y),predecessor(Y,Z)

11
Clauses Queries Means of asking the program what things are true Have empty head Example: ? parent(tom, bob). Is tom parent of bob ? Example: ? parent( tom, X). Find X such that tom is parent of X.

12
Matching Two terms (eg. predicate instance) will match if: They are identical, or The variables in the terms should be instantiated such that after substitution of variables by these objects the terms become identical Example: ?date(D,M,2007)=date(10,jan,Y) D=10 M=jan Y=2007

13
Example Program % Facts: parent(pam,bob). parent(tom,bob). parent(tom,liz). parent(bob,ann). parent(bob,pat). parent(pat,jim). % Rules: predecessor(X,Z) :- parent(X,Z). % R1 predecessor(X,Z) :- parent(X,Y), predecessor(Y,Z). % R2

14
Example Program And-Or Graph

15
Example Program Queries and Output ?predecessor(tom,pat). Yes. ?predecessor(bob,X). X=ann; X=pat; X=jim; No. “ ; “ is used to generate other (different) solutions

16
How PROLOG works ? predecessor(tom,pat).

17
PROLOG execution summary At each stage there is a list of goals to be satisfied. PROLOG selects the leftmost subgoal and searches for a rule/fact head which matches it. The matching process can bind variables. The first subgoal is then replaced by the body of the matching rule/fact, yielding a new list of subgoals. If there are no (more) matching rule/fact (subgoal fails!) or if the user asks for the next solution, PROLOG backtracks.

18
Program Execution Summary Unless all instantiation fails for a given rule, next rule is not explored. System remembers where call rests in AND/OR graph and what instantiations are there for each term. The most recent choice of rule/fact is undone, including any variable bindings which were made when the head was matched. PROLOG searches for an alternative matching rule/fact.

19
Declarative Meaning A goal G is true if and only if there is a clause C in the program such that C matches G, or There is a clause instance I of C such that the head of I is identical to G, and all the goals in the body of I are true P:-Q,R. % P is true if Q and R are ture

20
Procedural Meaning Specifies how Prolog answer questions Procedural meaning of a “call”: First match all arguments arg i with corresponding patterns pat i. Then perform calls cond 1,..., cond m in that order. goal pred(arg 1,..., arg n ) gives rise to subgoals cond 1,..., cond m to be satisfied from left to right.

21
Procedural meaning big(bear). % clause 1 big(elephant). % clause 2 small(cat). % clause 3 brown( bear). % clause 4 black( cat). % clause 5 gray( elephant). % clause 6 dark( Z) :- black( Z) % clause 7: anything black is dark dark( Z) :- brown( Z) % clause 8: anything brown is dark

22
Procedural Meaning ?- dark( X), big( X). Execution trace: (1) Initial goal list: dark( X), big( X). (2) Scan the program from top to bottom looking for a clause whose head matches the first goal dark( X). Clause 7 is found, which is dark( Z) :- black( Z). Replace the first goal by the instantiated body of clause 7, giving a new goal list: black( X), big( X). (3) Scan the program to find a match with black( X). Clause 5 is found: black (cat). This clause has no body, so the goal list properly instantiated, shrinks to: big( cat)

23
Procedural Meaning (4) Scan the program for the goal big( cat). No clause is found. Therefore it backtracks to step(3) and undo the instantiation X = cat. Now the goal list is again: black (X), big( X) Continue scanning the program below clause 5. No clause is found. Therefore backtrack to step(2) and continue scanning below clause 7. Clause 8 is found: dark (Z) :- brown( Z) Replace the first goal in the goal list by brown (X), giving: brown( X), big( X) (5) Scan the program to match brown( X), finding brown (bear). This clause has no body, so the goal list shrinks to: big( bear) (6) Scan the program to find clause with big( bear). This is given as fact in clause 1, and it has no body so the list shrinks to empty. This indicates successful termination, and the corresponding variable instantiation is: X = bear.

24
List List is a sequence of any number of items Example : [mech, elec, civil, aero, cse, john, [1,2], [], [X]] List consists of two parts i.e L = [Head|Tail] : Head – First item of the list Tail – Remaining part of the list (tail itself is a list) Empty list is also a list ( [ ] ) Lists are handled in Prolog as trees List1=[a, b, c] [a, b, c] = [a | [b,c] ] = [a, b | [c] ] = [a, b, c| [ ] ]

25
Membership member(X,L) : X is an object that occurs in L X is a member of list L if either: X is the head of L. or X is a member of the tail of L. member( X, [X| Tail] ). member( X, [Head| Tail] ) :- member( X, Tail ). Example: ?- member( a, [a, b, c]). Yes. ?- member( [b, c], [a, [b, c]]). Yes. ?- member(b, [a, [b, c]]). No.

26
Concatenation conc(L1,L2,L3) : L3 is the concatenation of L1 & L2 If the first argument is empty list then second and third arguments must be the same list. conc([ ], L, L). If the first argument is non-empty list then it can be represented as [X|L1]. Then the result of concatenation will be [X|L3] where L3 is the concatenation of L1 and L2. conc([X|L1], L2, [X|L3]) :- conc(L1, L2, L3).

27
Concatenation Examples: ?- conc( [a,[b,c],d], [a, [ ],b], L). L = [a, [b,c], d, a, [ ], b] ?- conc( Before, [feb| After], [ jan, feb, mar]). Before = [ jan ] After = [ mar ] Note: Refer to rule - conc([X|L1], L2, [X|L3]) :- conc(L1, L2, L3).

28
Deleting an item del(X,L,L1) : L1 is equal to L with the first occurrence of item X removed. If X is the head of the list then the result after deletion is the tail of the list. del( X, [X| Tail], Tail). If X is in the tail then it is deleted from there. del(X, [Y| Tail], [Y| Tail1]) :- del(X, Tail, Tail1) Example: ?- del(a, [a, b, a, c], L). L = [b, a, c]; L = [a, b, c]; no

29
Inserting an item insert(X,L,L1) : L1 is any list such that deleting X from L1 gives L. insert( X, List, BiggerList) :- del( X, BiggerList, List). Example: ?- insert( a, [ b, c, d], L). L = [a, b, c, d]; L = [b, a, c, d]; L = [b, c, a, d]; L = [b, c, d, a]; no

30
Adding an item add(X,L,L1) : L1 is the list obtained by adding X to L. X is added in front of the list L. The resulting list L1 is simply [X|L]. add(X,L,[X|L]). Example: ? add(4.2, [1, a, f, [2] ], L1). L1 = [4.2, 1, a, f, [2] ]

31
Sublist S is a sublist of L if: L can be decomposed into two lists, L1 and L2, & L2 can be decomposed into two lists, S and some L3 L L2 L1SL3

32
Sublist sublist(S,L):- conc(L1,L2,L), conc(S,L3,L2) Example: ? sublist([b,c],[a,b,c,d,e]). Yes ? sublist (S, [a,b,c]). S = [ ]; S = [a]; S = [a,b]; S = [a,b,c]; S = [ ]; S= [b]; …

33
Operators Some of the operators are in-built in Prolog. Some predefined arithmetic operators: + addition - subtraction * multiplication /division mod modulo, the remainder of integer division Precedence of operator decides the correct interpretation of expressions. Operator with highest precedence is the principle functor of the term. Operators are functors. 3+4 = 3+4 ( 3+4 ≠ 7)

34
Operators New operators can be defined by inserting into special kind of clauses called directives. Example: :-op(600,xfx, ) Three group of operators: infix: xfx, xfy, yfx prefix: fx, fy postfix: xf, yf These definition helps in unambiguous interpretation of expressions which have sequence of binary operators.

35
Operators x represents an argument whose precedence must be strictly lower than that of operator y represents an argument whose precedence is lower or equal to that of operator Precedence of an argument in parentheses or unstructured object is zero Precedence of a structured argument is equal to the precedence of its principal functor Example: :-op(500,yfx,- ) a – b – c Interpreted as (a-b)-c and not as a-(b-c)

36
Arithmetic ‘=‘ is matching operator (it does not evaluate on its own) Matches right hand side with left hand side Examples: 1.? X=1+2 X=1+2 2.? 1+3=2+2 No 3. ?X+3=4+Y X=4 Y=3

37
Arithmetic ‘is’ operator forces evaluation of expression on RHS forcing instantiation of values on LHS to the evaluated value Examples: 1. X is 1+2 X=3 1. Y is 5 mod 2 Y=1 At the time of evaluation all arguments must be instantiated to numbers

38
Arithmetic Values of arithmetic expressions can be compared by arithmetic operators: X

39
Example Calculating number of elements in a list length(List,N) % N is the number of elements in List length([ ], 0). %R1 length( [Head|Tail], N):- length(Tail, N1), N is 1+N1.%R2 Query: ? length ([a,b,c,d],N). N = 4

Similar presentations

OK

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 9: A closer look at terms Theory –Introduce the == predicate –Take a closer look at term structure.

© Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 9: A closer look at terms Theory –Introduce the == predicate –Take a closer look at term structure.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Free ppt on personality development for students Ppt on p&g products images Ppt on book review of fish tales Ppt on ram and rom Ppt on rbi reforms for the completion Download ppt on 4 p's of marketing Home networking seminar ppt on 4g Ppt on introduction to object-oriented programming language Ppt on alternative fuels for i.c engine Ppt on airport authority of india