Presentation is loading. Please wait.

Presentation is loading. Please wait.

Get Up Stand Up GuSu Andrew Leger Joshua Rust Matthew O’Morrow Philip Bell Group 5 Summer 09.

Similar presentations

Presentation on theme: "Get Up Stand Up GuSu Andrew Leger Joshua Rust Matthew O’Morrow Philip Bell Group 5 Summer 09."— Presentation transcript:

1 Get Up Stand Up GuSu Andrew Leger Joshua Rust Matthew O’Morrow Philip Bell Group 5 Summer 09

2 Problem Can’t always wake up on time Most alarms are more “annoying” than waking Almost all alarms allow the user to go back to bed

3 Solution Wake the user on time Wake the user “gently” Flexible and robust alarm clock allowing many options in both timing and method of waking the user Make sure the user is awake Detect user’s presence in bed and do not allow snooze or off option during their waking time

4 Objectives Timing Internal clock Flexibility Full user control over “what” and “when” Seven day alarm time programmability Options FM tuner integration MP3 audio integration via USB media slot Tone buzzers User detection Sensing system for detecting when user is in bed

5 Objectives For the alarm time span set by the user, if they are detected by the sensor system, the alarm performs user chosen actions and silences itself anytime there is no user detected The appliance module will use local on/off control and is remotely controllable by the alarm clock The alarm clock has a battery backup to prevent both clock time loss due to power outage and snoozing by unplugging Power usage is designed around efficiency

6 Specifications System does not exceed 12”L x 9”W x 5”H It displays time and date in U.S. standard format (HH:MM) using OLED screen Battery backup lasts through 8 hours (4 hours is an average power outage) Pressure sensors have 12 feet of wire for flexible placement Wireless integration has a minimum range of 100 feet

7 System Overview

8 External Enclosure

9 Case Design Chosen material: Wood Top: Pushbuttons Front: OLED and Speaker Back: Power cable, and USB media slot Side: FM tuning knob 5” 12” 9”

10 Microcontroller

11 Microcontroller Requirements Handles all communication and control between external devices Must support USART, SPI, and I2C, ADC Five push buttons, XBee, MP3 decoder, FM Tuner, USB thumb drive Enough memory for system logic and device interfacing Low power

12 ATmega644P Specifications The ATmega644P is a 40 pin Advanced RISC Architecture microprocessor: 64 KB Flash memory 20 MIPS at 20 MHz 8 bit ADC Two UART ports SPI ports I2C port Adequate amount of digital I/O pins for possible expansion of functionality

13 Alarm Implementation

14 Block Diagram Microcontroller Audio Amplifier Buzzer Speaker MP3 Decoder FM Tuner FM Tuner and Buzzers are powered on through the microcontroller only when in use. The MP3 audio is sent to an audio jack for external speakers. A common LM1458 Op-Amp is used to amplify the FM audio before passing it to the internal speaker, and is controlled with an analog potentiometer. External Audio Jack

15 Buzzers Two buzzers are used, the CPE-503 and the WST- 1205S The WST-1205S is turned on using 5V and has a set output of about 85dB, which is the softer buzzer. The CPE-503 has an audio output of 95dB, and is also controlled with a 5V line from the microcontroller. 95 dB is the loudest noise that should be used without the risk of causing hearing damage over extended periods of time.

16 FM Tuner TDA7000 chip chosen for easy implementation on a PCB Tuning is voltage controlled, which is changed via a variable inductor and potentiometer, which is part of the housing and connect to the PCB with leads for user tuning

17 USB Flash Drive Reader USB Flash Drive is used to play MP3 files using the FAT16 file system on the VMusic2 module Socket will be externally accessible Interface to the microcontroller is Serial uART

18 MP3 Decoder VS1003 chip used to decode data from USB Host Controller via SPI interface, subsequently sending data to microcontroller and then to speaker output The data request pin is set high when the VS1003 is capable of receiving data Plays different audio formats: MP3, WMA, and MIDI It can determine sampling frequency up to 48 KHz and MP3 input rate of 320Kbit/sec, again simplifying implementation work required

19 User Interface

20 Physical user interface Five pushbuttons Up, Down, Left, Right, Center Used to navigate menus during setting

21 OLED Display uOLED-160-G1 (Organic Light Emitting Diode) Resolution: 160x128 pixels with 256/65K true color. Width: 1.81 in, Height: 1.26 in Chosen for 5 pin UART interface and full graphical display ability

22 Graphical user interface Current time Day of the week Next alarm time Selected action and their order Running DisplaySetting Display What options can be changed under current menu Current setting Highlight current selected setting for changing

23 Sensor system

24 Hypothetical Implementation

25 FAILED!!!

26 Pulsor Pressure Sensor Pulsor is a motion / presence detection device that responds to the physical flexing of the material on which it is mounted. The flexing of the material varies the resistance of the sensor connected as R2 in a voltage divider network The voltage is measure in an ADC converter to determine if the user is in the bed.

27 Wireless Integration

28 The appliance module is capable of controlling any appliance with a max of 20 amps. It has a indicator light for current status and a push button for local status control. The user can also choose to enable the appliance module start time with alarm time.

29 Xbee Series 2 Module Complete System on Chip module Provides wireless serial interface Zigbee Compliant AES 128 Bit encryption Out of the box solution for enabling wireless communication between devices

30 Clock

31 Real Time Clock- DS-1307 Using an external clock will prevent timing issues in program execution. Communicates with microcontroller over I2C interface Stores HH:MM:SS and DD/MM/YYYY Highly accurate with support for daylight savings and leap years

32 Power Supply

33 A 5V and 3.3V DC power supply is required. Also, +12V and -12V is required to bias the Op-Amp A Power LED and battery replacement LED indicate status 12V Wall Wart 3.3V Step-Down 5V Voltage Regulator Op-Amp -12V Line AC Wall Outlet Zigbee Microcontroller FM Tuner OLED ScreenClock/Timer Pressure Sensor Buzzers Battery Back-up USB/MP3

34 Device Requirements DeviceVoltage Req. (DC)Current Req. (Active) Microcontroller2V – 5V<10 mA FM Tuner4.5V – 5V8mA OLED Screen4V – 6V mA (typ. 40) Pressure Sensor3V – 5V<100uA Buzzers4V – 6V30 mA VMusic24V – 6V<90 mA Clock/Timer2V – 5.5V2 mA ZIGBEE2.1V – 3.6V40 mA Op-Amp+12V and -12V5 mA Totals , 4-5, -12, mA max Main power supply is a wall wart that provides 12V DC, and allows for 1A of current

35 Backup Battery 8 AA batteries in series serve as the backup battery These provide the most cost- efficient implementation, and are easily replaceable for the user AA batteries store roughly 2800 mA*h of charge, and during testing, supplied over 20 hours of power to the device.

36 Schematics 1.A common 12V wall wart is used to provide the power 2.The backup battery (12V) only activates when there are power outages, and the LED will only turn on if the battery is failing 3.LM7805 voltage regulator is used as step-down, with an LED for visible confirmation of “power on” 4.LM11171 voltage regulator is used to step the 5V line down to 3.3V for the Zigbee 5.The Op-Amp is biased with the +12V source and a -12V line from a DC/DC converter (NKA1212SC from Murata Power Solutions)

37 Software

38 Creation Software Engineers Josh Rust Philip Bell Programming Languages Arduino/C++ Development Environment Arduino 0016 Design Control all devices and hardware connected to microcontroller Be complex enough to simplify user controls and implement the planned graphical user interface Total code size must not exceed 64KB Available RAM is only 2 KB

39 Software Implementation Global variables for all user settings Two “Main” functions RunMode and SetMode invoke all other functions and decide behavior based on user interaction

40 Printed Circuit Board Current Finalized Design Filled Ground plane Created with ExpressPCB in conjunction with ExpressSCH

41 Project Budget ComponentsTotal Cost uOLED-160-G1 Display$ (2) Atmel ATmega644-20PU$7.87 (1) Sanguino Dev Kit$25.00 (1) Xbee Modules$46.00 (2) Atmel ATmega168$4.00 (1) Housing/Case Supplies$25.00 (1) MP3/USB reader$58.00 (2) DS1307 Clock Timer$5.06 (1) TDA7000 FM Tuner$7.00 (1) PressureSensor$29.00 (2) Directional Infrared Sensor $3.80 (2) Fresnel Lens$1.75 (5) PIR Sensor Module$7.40 (1) SD Card and socket$22.95 (1) Logitech Speakers$30.00 (1) ComponentsTotal Cost Infrared Induction Control $2.70 (3) Amtel ATmega168$10.00 (2) LP8072 PIR Sensor$1.80 (3) M7612 PIR Controller$2.70 (3) STA013 MP3 Decoder$13.80 (2) 28 Pin SOIC Adapater$1.60 (2) LM7805 5V Regulator$0.51 (1) DE-SWADJ 3.3V Regulator $15.00 (1) WST-1205S Buzzer$1.81 (1) LM1458 Op-Amp$0.50 (1) EAS-4P15SA Speaker$4.32 (1) TS5A23159DGSR MUX$0.81 (1) Printed Circuit Board$ (2) Miscellaneous$50.00 (1) Total: $643.36

42 Project milestones

43 Project Difficulties Audio amplification with DC voltage and digital potentiometer Powering MP3 device through a relay Insufficient amount of memory on ATmega644P for menu system, minimization of code was performed. SD Card communication over SPI

44 Project Difficulties Implementation of a software serial system Timing over an I2C connection Keeping the complex menu system intuitive and easy to use Integrating and testing with the Pulsor Pressure Sensor

45 Work Distribution Andrew Power Supply Battery Backup FM Implementation PCB Design Audio Output Josh Wireless Xbee Implementation Software/Hardware Libraries External Enclosure Design Clock Implementation Philip Physical User Interface Graphical User Interface Behavior/Control Software Sensor System Matt OLED Implementation MP3 Implementation Project Website

46 Special Thanks Michael Angell - UCF B.S.M.E. External enclosure schematics for Solid Works Dr. Samuel Richie - Undergraduate Program Coordinator of EE/CpE Supporting the project

47 Questions? Comments? Improvements?

Download ppt "Get Up Stand Up GuSu Andrew Leger Joshua Rust Matthew O’Morrow Philip Bell Group 5 Summer 09."

Similar presentations

Ads by Google