# Advances and directions of research in Symbolic Data Analysis E. Diday CEREMADE. Paris–Dauphine University June 14, 2014 SDA Workshop – Tutorial Academica.

## Presentation on theme: "Advances and directions of research in Symbolic Data Analysis E. Diday CEREMADE. Paris–Dauphine University June 14, 2014 SDA Workshop – Tutorial Academica."— Presentation transcript:

Advances and directions of research in Symbolic Data Analysis E. Diday CEREMADE. Paris–Dauphine University June 14, 2014 SDA Workshop – Tutorial Academica Sinica

OUTLINE PART 1 BUILDING SYMBOLIC DATA PART 2 OPEN DIRECTION OF RESEARH. PART 3 AN ILLUSTRATIVE EXAMPLE : TRACHOMA STUDY

PART 1 Building Symbolic data:. Some principles. Ten kinds of Symbolic Variables

Some principles  Symbolic Data are not given or found like standard or complex data.  They are build from classes of individuals in case of standard data or from classes of several kinds of individuals in case of complex data.  Symbolic data are not only distributions.

Ten examples of Symbolic variables

PART 2: OPEN DIRECTION OF RESEARH Building Symbolic Data. Extending methods to Symbolic Data Four theorems of convergence needed to be proved on any extended method to Symbolic Data Models of models Law of parameters of laws and Laws of vectors of laws. Copulas needing. Optimisation in non supervised learning (hierarchical and pyramidal clustering).

BUILDING SYMBOLIC DATA The discretization of the initial classical variables has to be donne in order to optimize at least three kinds of aims: 1) The quality of the obtained distribution  It can be measured by model selection criteria BIC, MDL, AIC, MML like or other criterion of this kind based on the likelihood estimation.  Flat distributions are not interesting so criterion of “information” like (Sum of p i Log(p i )) can be used. 2) The level of discrimination between the obtained symbolic description. It can be measured by the sum of their dissimilarities two by two. 3) The correlation between the bins associated to the different symbolic variables (metabins).

- Graphical visualisation of Symbolic Data - Correlation, Mean, Mean Square, distribution of a symbolic variables. - Dissimilarities between symbolic descriptions, K-nearest neighbourg - Clustering, spatial hierarchies and pyramids of symbolic descriptions, S- Kohonen Mappings - S-Decision Trees - S-Principal Component, Discriminant Factorial Analysis - S- Canonical Analysis, Regression  S- Bayesian trees, Multilevel analysis, Variance Analysis, Vector Support Machine, Mixture decomposition, Multilevel Analysis, Learnong machine by groups. - Etc... EXTENDING METHODS ON SYMBOLIC DATA: MUCH REMAINS TO BE DONE

M(n, k) is supposed to be a SDA method where k is the number of classes obtained on n initial individuals. THEOREME 1 : If the k classes are fixed and n tends towards infinity, then M(n, k) converges towards a stable position. THEOREME 2 : If k increases until getting a single individual by class, then M(n, k) converges towards a standard method. THEOREME 3 : If k and n increase simulataneously towards infinity, then M(n, k) converges towards a stable position. THEOREME 4 If the k laws associated to the k classes are considered as a sample of a law of laws, then M(n, k) applied to this sample converges to M(n, k) applied to this law. Exemples : Théorème 1: il a été démontré dans Diday, Emilion (CRAS, Choquet 1998), pour les treillis de Galois: à mesure que la taille de la population augmente les classes (décrites par des vecteurs de distributions), s’organisent dans un treillis de Galois qui converge. Emilion (CRAS, 2002) donne aussi un théorème dans le cas de mélanges de lois de lois utilisant les martingales et un modèle de Dirichlet. Théorème 2: Par ex, l’ACP classique M O est un cas particulier de l’ACP notée M(n, k) construite sur les vecteurs d’intervalles. Théorème 3: c’est le cadre de données qui arrivent séquentiellement (de type « Data Stream ») et des algorithmes de type one pass (voir par ex Diday, Murty (2005)). Théorème 4: Dans le cas d'une classification hiérarchique ou pyramidale 2D, 3D etc. la convergence signifie que les grands paliers et leur structure se stabilisent. Dans le cas d’une ACP la convergence signifie que les axes factoriels se stabilisent. FOUR THEOREM TO BE PROVED ON ANY EXTENDED METHOD TO SYMBOLIC DATA

MODELS OF MODELS ARE NEEDED Individual X1X1 XjXj ind 1 Messi X ij ind n X’ j X’ 1 Team s CiCi CkCk C1C1 A symbolic data (age of Messi team) Table 1 Table 2 A number (age of Messi) X j is a standard random numerical variable X’ j is a random variable with histogram value  Question: if the law of Xj is given what is the law of X’ j ? (Dirichlet models useful).

Law of parameters of laws Y1Y1 YjYj C1C1 CiCi Par ij CkCk Example: Par ij = (  ij, ϭ ij ) Estimated parameters of the law X ij of the class C i Y1Y1 YjYj YpYp Law(P ar j ) Law (Par p ) Find the law of the parameters for each symbolic variable Y j and the law of the associated vector of parameters laws. Example: If f is the density of the parameters of the uniform law of intervals and g the law of intervals then: g(y) = 6 p f(x) /  j = 1,p (x j max - x j min ) (Diday à SFC 2011 Orléans).

In each ll of the symbolic data table, we supose to have a density function f(i,j) f(i, j, j’) is the joint probability of the variables j and j’ for the individual i.  In case of independency, we have f(i, j, j’) = f(i, j’). f(i, j’),  If there is no independancy: f(i, j, j’) = Copula(f(i, j’). f(i, j’)) Aim of Copula model in SDA:  find the Copula which minimise the differences with the joint.  In order to avoid the restriction to independency hypotheses and to reduce the cost of f(i, j, j’) computing.  In that way we can obtain a Copular PCA, Regression, Canonical, Analysis, …. Copulas needing in Symbolic Data Analysis

Bi-plot of histogram variables The joint probability can be inferred by a copula model Y2Y2 Y1Y1 CiCi CkCk C1C1 Copula

Each class is described by symbolic data C2 A 1 B1 C1 C3 3D Spatial Pyramid x1 x2x3x4 x5 Pyramides Hierarchies x1 x2 x3x4 x5 S2S2 S1 Ultrametric dissimilarity = U Robinsonian dissimilarity = R Yadidean dissimilarity = Y W = |d - U | W = |d - R | W = |d - Y | Optimisation in clustering d is the given dissimilarity

 Trachoma, caused by repeated ocular infections with Chlamydia tra- chomatis whose vector is a ﬂy, is an important cause of blindness in the world. This study was conducted in Mali.  The first aim was to choose among three antibiotic strategies those with the best cost-eﬀectiveness ratio.  The second aim was to ﬁnd the demographic and environmental parameters on which we could try to intervene. PART 3 ILLUSTRATIVE EXAMPLE ON TRACHOMA

Symbolic Table of Degradation The classes 0x0, 0x1, 1x0 and 1x1 of degradation (0 = healthy, 1 = ill at the (beginning x end) of the one year study. These classes are directly issued from the given data and not from a clustering process. INTERPRETATION: The THIRD STRATEGY is the most frequent in the worth class (0x1). Nevertheless we cannot conclude that it is the worth strategy as the degradation can come from the environmental of this class 0X1.

The third strategy remains the worse in three homogeneous environmental conditions obtained by clustering

PCA OF THE SYMBOLIC DATA TABLE OF DEGRADATION A Standard PCA is applied on the categories of the symbolic fariables (considered as numerical variables) of the “degradation symbolic data table” on which the piecharts of the strategies are projected.

ANY PIECHART oF SYMBOLIC VARIABLE CAN BE SEEN: Borehole well

CORRELATION CIRCLE OF ALL THE CATEGORIES ( ie BINS) OF THE SYMBOLIC VARIABLES ON THE FIRST AXIS.

SYMBOLIC VARIABLES PROJECTION IN HYPERCUBE QUADRANT SYMBOLIC VARIABLES PROJECTION

THE SDA STRATEGY  The classes are generally not obtained from a clustering process. The classes 0x0, 0x1, 1x0 and 1x1 of degradation are directly issued from the given data.  the clustering strategy in SDA is not much used to build the classes to be studied, it is mainly used in order to show dependencies or independencies between groups of symbolic variables. Here the environmental conditions

CONCLUSION Classical, Complex and Big Data are GIVEN. Symbolic data are BUILD. Complex and Big Data data can be simplified and reduced in Symbolic Data. The quality the obtained Symbolic Data can be improved by optimization of several criteria. The number of papers for building Symbolic Data remains few. Much remains to do in this direction. Symbolic data are not only distributions.  SYMBOLIC DATA ARE THE NUMBERS OF THE FUTURE.

Basic books and papers Bock H.H., Diday E. (editors and co-authors) ( 2000): Analysis of Symbolic Data.Exploratory methods for extracting statistical information from complex data. Springer Verlag, Heidelberg, 425 pages, ISBN 3-540-66619-2. L. Billard, E. Diday (2003) "From the statistics of data to the statistic of knowledge: Symbolic Data Analysis". JASA. Journal of the American Statistical Association. Juin, Vol. 98, N° 462. Billard, L. and Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data Mining. 321 pages. Wiley series in computational statistics. Wiley, Chichester, ISBN 0-470-09016-2. E. Diday, M. Noirhomme (eds and co-authors) (2008) “Symbolic Data Analysis and the SODAS software”. 457 pages. Wiley. ISBN 978-0-470- 01883-5. Noirhomme-Fraiture, M. and Brito, P. (2012) Far beyond the classical data models: symbolic data analysis. Statistical Analysis and Data Mining 4 (2), 157-170. Lazare N. (2013) "Symbolic Data Analysis". CHANCE magazine. Editor’s Letter – Vol. 26, No. 3.

In Building Symbolic Data Stéphan V., Hébrail G.,Lechevallier Y. (2000) « Generation of symbolic objects from relationnal data base ». Chapter in book : Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data (eds. H.-H.Bock and E. Diday). Springer-Verlag, Berlin, 103-124. Chiun-How, K., Chih-Wen, O., Yin-Jing, T., Chuan-kai, Yang, Chun-houh, Chen (2012) “A Symbolic Database for TIMSS”. Arroyo J., Maté C., Brito P. Noihomme M. eds, 3rd Workshop in Symbolic Data Analysis. Universidad Compiutense de Madrid. http://www.sda- workshop.org/. E. Diday, F. Afonso, R. Haddad (2013) : “The symbolic data analysis paradigm, discriminate discretization and financial application ”. In Advances in Theory and Applications of High Dimensional and Symbolic Data Analysis, HDSDA 2013. Revue des Nouvelles Technologies de l'Information vol. RNTI-E-25, pp. 1-14

IN SYMBOLIC DATA ANALYSIS  In Pricipal Component Analysis Cazes P., Chouakria A., Diday E., Schektman Y. (1997). Extension de l’analyse en composantes principales à des données de type intervalle, Rev. Statistique Appliquées, Vol. XLV Num. 3, pp. 5-24, France. 29. Cazes P. (2002) Analyse factorielle d’un tableau de lois de probabilité. Revue de statistique appliquée, tome 50, n0 3. Diday E. (2013) "Principal Component Analysis for bar charts and Metabins tables". Statistical Analysis and Data Mining. Article first published online: 20 May 2013. DOI: 10.1002/sam.11188. 2013 Wiley. Statistical Analysis and Data Mining,6,5, 403-430. Ichino, M. (2011). The quantile method for symbolic principal component analysis. Statistical Analysis and Data Mining, Wiley. 184-198. Makosso-Kallyth S. and Diday E. (2012) Adaptation of interval PCA to symbolic histogram variables. Advances in Data Analysis and Classification (ADAC). July, Volume 6, Issue 2, pp 147-159. Rademacher, J., Billard, L., (2012) Principal component analysis for interval data. Wiley interdisciplinary Reviews: Computational Statistics.Volume 4, Issue 6, pp. 535–540. Shimizu N., Nakano J. (2012) Histograms Principal Component Analysis. Arroyo J., Maté C., Brito P. Noihomme M. eds, 3rd Workshop in Symbolic Data Analysis. Universidad Compiutense de Madrid. http://www.sda-workshop.org/http://www.sda-workshop.org/ Wang H., Guan R., Wu J. (2012a). CIPCA: Complete-Information-based Principal Component Analysis for interval-valued data, Neurocomputing, Volume 86, Pages 158-169.

 In Symbolic Forecasting Arroyo, J. and Maté, C. (2009). Forecasting histogram time series with k-nearest neighbors' methods. International Journal of Forecasting 25, 192–207. García-Ascanio, C.; Maté, C. (2010). Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy 38, 715-725 Han, A., Hong, Y., Lai, K.K., Wang, S. (2008). Interval time series analysis with an application to the sterling-dollar exchange rate. Journal of Systems Science and Complexity, 21 (4), 550-565. He, L.T. and C. Hu (2009). Impacts of Interval Computing on Stock Market Variability Forecasting. Computational Economics 33, 263-276.  In Symbolic rule extraction Afonso, F. et Diday, E. (2005). Extension de l’algorithme Apriori et des regles d’association aux cas des donnees symboliques diagrammes et intervalles. Revue RNTI, Extraction et Gestion des Connaissances (EGC 2005), Vol. 1, pp 205-210, Cepadues, 2005.

 In Symbolic Decision Tree Ciampi, A., Diday, E., Lebbe, J., Perinel, E. et Vignes, R. (2000). Growing a tree classifier with imprecise data. Pattern Recognition letters 21: 787-803. Mballo C., Diday E. (2006) The criterion of Smirnov-Kolmogorov for binary decision tree : application to interval valued variables. Intelligent Data Analysis. Volume 10, Number 4. pp 325 – 341Volume 10, Number 4 Winsberg S., Diday E., Limam M. (2006). A tree structured classifier for symbolic class description. Compstat 2006. Physica-Verlag. Bravo, M. et Garcia-Santesmases, J. (2000). Symbolic Object Description of Strata by Segmentation Trees, Computational Statistics, 15:13-24, Physica-Verlag.

 In Clustering De Carvalho F., Souza R., Chavent M., and Lechevallier Y. (2006) Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognition Letters Volume 27, Issue 3, February 2006, Pages 167-179. De Souza R.M.C.R, De Carvalho F.A.T. (2004). Clustering of interval data based on City-Block distances. Pattern Recognition Letters, 25, 353–365. Diday E. (2008) Spatial classification. DAM (Discrete Applied Mathematics) Volume 156, Issue 8, Pages 1271-1294. Diday, E., Murty, N. (2005) "Symbolic Data Clustering" in Encyclopedia of Data Warehousing and Mining. John Wong editor. Idea Group Reference Publisher. Irpino, A. and Verde, R. (2008): Dynamic clustering of interval data using a Wasserstein-based distance. Pattern Recognition Letters 29, 1648-1658.  In Multidimensional Scaling Terada, Y., Yadohisa, H. (2011) Multidimensional scaling with hyperbox model for percentile dissimilarities, In: Watada, J., Phillips-Wren, G., Jain, L. C., and Howlett, R. J. (Eds.): Intelligent Decision Technologies Springer Verlag, 779–788 Groenen, P.J.F.,Winsberg, S., Rodriguez, O., Diday, E. (2006). I-Scal: Multidimensional scaling of interval dissimilarities. Computational Statistics and Data Analysis 51, 360–378.

 In Self Organizing map Hajjar C., Hamdan H. (2011). Self-organizing map based on L2 distance for interval-valued data. In SACI 2011, 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (Timisoara, Romania), pp. 317– 322.P.  In Dissimilarities between Symbolic Data Kim, J. and Billard, L. (2013): Dissimilarity measures for histogram-valued observations, Communications in Statistics- Theory and Method, 42, 283-303. Verde, R., Irpino, A. (2010). Ordinary Least Squares for Histogram Data Based on Wasserstein Distance, in: Proc. COMPSTAT’2010, Y. Lechevallier and G.Saporta (Eds).PP.581-589. Physica Verlag Heidelberg. Some Symbolic Data Analysis references

 In Regression and Canonical analysis extended to Symbolic Data Dias, S., Brito, P., (2011). A New Linear Regression Model for Histogram- Valued Variables. In Proceedings of the 58th ISI World Statistics Congress (Dublin, Ireland). Lauro, C., Verde, R., Irpino, A. (2008). Generalized canonical analysis, in: Symbolic Data Analysis and the Sodas Software, E. Diday and M. Noirhomme. Fraiture (Eds.), 313-330, Wiley, Chichester. Tenenhaus A., Diday E., Emilion R., Afonso F. (2013) Regularized General Canonical Correlation Analysis Extended To Symbolic Data. ADAC (publication on the way). Neto, E.A, De Carvalho F.A.T. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis 54, 333-347. Wang H., Guan R., Wu J. (2012c). Linear regression of interval-valued data based on complete information in hypercubes, Journal of Systems Science and Systems Engineering, Volume 21, Issue 4, Page 422-442.

In Symbolic Data Models referencies P. Bertrand, F. Goupil (2000) “ Descriptive Statistics for symbolic data“. In H.H. Bock, E. Diday (Eds) “Analysis of Symbolic Data “. Springer-Verlag, pp. 106-124. Brito, P. and Duarte Silva, A.P. (2012). Modelling interval data with Normal and Skew- Normal distributions. Journal of Applied Statistics, 39 (1), 3-20. E. Diday, M. Vrac (2005) "Mixture decomposition of distributions by Copulas in the symbolic data analysis framework". Discrete Applied Mathematics (DAM). Volume 147, Issue1, 1 April, pp. 27-41. E. Diday (2011) Modélisation de données symboliques et application au cas des intervalles. Journées Nationales de la Société Francophone de Classification. Orléans E. Diday (2002) “From Schweizer to Dempster: mixture decomposition of distributions by copulas in the symbolic data analysis framework” IPMU 2002, July, Annecy, France Diday E., Emilion R. (1997) "Treillis de Galois Maximaux et Capacités de Choquet". C.R. Acad. Sc. t.325, Série 1, p 261-266. Présenté par G. Choquet en Analyse Mathématiques Diday E., R. Emilion (2003) Maximal and stochastic Galois lattices. Discrete appliedMath. Journal. Vol. 27 (2), pp. 271-284. Emilion R., Classification et mélanges de processus. C.R. Acad. Sci. Paris, 335, série I, 189-193 (2002). Emilion R., Unsupervised Classification and Analysis of objects described by nonparametric probability distributions. Statistical Analysis and Data Mining (SAM), Vol 5, 5, 388-398 (2012). J. Le-Rademacher, L. Billard (2011) “Likelihood functions and some maximum likelihood estimators for symbolic data”. Journal of Statistical Planning and Inference 141 1593– 1602. Elsevier. T. Soubdhan, R. Emilion, R. Calif (2009) “Classification of daily solar radiation distributions”. Solar Energy 83 (2009) 1056–1063. Elsevier.

Afonso F., Diday E., Badez N., Genest Y. (2010) Symbolic Data Analysis of Complex Data: Application to nuclear power plant. COMPSTAT’2010, Paris. Bezerra B., Carvalho F. (2011) Symbolic data analysis tools for recommendation systems. Knowl. Inf. Syst 01/2011; 26:385-418. DOI:10.1007/s10115-009-0282-3. Bouteiller V., Toque C., A., Cherrier J-F., Diday E., Cremona C. (2011) Non-destructive electrochemical characterizations of reinforced concrete corrosion: basic and symbolic data analysis. Corros Rev. Walter de Gruyter Berlin Boston. DOI 10.1515/corrrev-2011-002. Courtois, A., Genest, G., Afonso, F., Diday, E., Orcesi, A., (2012) In service inspection of reinforced concrete cooling towers – EDF’s feedback,IALCCE 2012, Vienna, Austria Cury, A., Crémona, C., Diday, E. (2010). Application of symbolic data analysis for structural modification assessment. Engineering Structures Journal. Vol 32, pp 762-775. Christelle Fablet, Edwin Diday, Stephanie Bougeard, Carole Toque, Lynne Billard (2010). Classification of Hierarchical-Structured Data with Symbolic Analysis. Application to Veterinary Epidemiology. COMPSTAT’2010, Paris. Haddad R., Afonso F., Diday E., (2011) Approche symbolique pour l'extraction de thématiques: Application à un corpus issu d'appels téléphoniques. In actes des XVIIIèmes Rencontres de la Sociéte francophone de Classification. Université d'Orléans Laaksonen, S. (2008). People’s Life Values and Trust Components in Europe - Symbolic Data Analysis for 20-22 Countries. In. Edwin Diday and Monique Noirhomme-Fraiture, “Symbolic Data Analysis and the SODAS Software", Chapter 22, pp. 405-419. Wiley and Sons: Chichester, UK. Quantin C., Billard L., Touati M., Andreu N., Cottin Y., Zeller M., Afonso F., Battaglia G., Seck D., Le Teuff G., and Diday E.. (2011) Classification and Regression Trees on Aggregate Data Modeling: An Application in Acute Myocardial Infarction. Journal of Probability and Statistics Volume 2011 (2011), 19 pages. Terraza V, Toque C. (2013) Mutual Fund Rating: A Symbolic Data Approach. In "Understanding Investment Funds Insights from Performance and Risk Analysis". Edited by Virginie Terraza and Hery Razafitombo. Economics & Finance Collection 2013. The Palgrave Macmilan editor. UK. He, L.T. and C. Hu (2009). Impacts of Interval Computing on Stock Market Variability Forecasting. Computational Economics 33, 263-276. E. Diday, F. Afonso, R. Haddad (2013) : The symbolic data analysis paradigm, discriminate discretization and financial application, in Advances in Theory and Applications of High Dimensional and Symbolic Data Analysis, HDSDA 2013. Revue des Nouvelles Technologies de l'Information vol. RNTI-E-25, pp. 1-14 Han, A., Hong, Y., Lai, K.K., Wang, S. (2008). Interval time series analysis with an application to the sterling-dollar exchange rate. Journal of Systems Science and Complexity, 21 (4), 550- 565. In SDA Industrial Applications