Presentation is loading. Please wait.

Presentation is loading. Please wait.

UCB Protection and Restoration in Optical Network Ling Huang

Similar presentations


Presentation on theme: "UCB Protection and Restoration in Optical Network Ling Huang"— Presentation transcript:

1 UCB Protection and Restoration in Optical Network Ling Huang

2 UCB Outline Introduction to Network Survivability Optics in Internet Protection and Restoration in Internet Optical Layer Survivability Protection in Ring Network Protection in Mesh Network Multi-Layer Resilience Conclusion.

3 UCB Network Survivability A very important aspect of modern networks The ever-increasing bit rate makes an unrecovered failure a significant loss for network operators. Cable cuts (especially terrestrial) are very frequent. No network-operator is willing to accept unprotected networks anymore. Restoration = function of rerouting failed connections Survivability = property of a network to be resilient to failure Requires physical redundancy and restoration protocols.

4 UCB Optics in the Internet SONET Data Center SONET DWD M Access Long Haul Access Metro

5 UCB Optical Network: a Layered vision Multi-physical layers multi & legacy services robustness, QOS Thin SONET IP Opti cs MPLS Fewer physical layers IP service dominance lower cost SONET IP Optics ATM Layer3210 Packet Optical Inter- working Smart Optical Packet IP/MPLS Packet IP/MPLS Layer 2/30/

6 UCB Protection and Restoration in Internet A well defined set of restoration techniques already exists in the upper electronic layers: ATM/MPLS IP TCP Restoration speeds in different layers: BGP-4: 15 – 30 minutes OSPF: 10 seconds to minutes SONET: 50 milliseconds Optical Mesh: currently hundred milliseconds to minutes

7 UCB Why Optical Layer Protection Restoration in the upper layers is slow and require intensive signaling On contrary 50-ms range when automatic protection schemes are implement in the optical transport layer. Purpose of performing restoration in the optical layer: To decrease the outage time by exploiting fast rerouting of the failed connection. Main problem in adding protection function in a new layer: Instability due to duplication of functions. Need the merging of DWDM and electronic transport layer control and management.

8 UCB Why Optical Layer Protection? Advantages. Speed. Efficiency. Limitation Detection of all faults not possible.(3R). Protects traffic in units of light paths. Race conditions when optical and client layer both try to protect against same failure.

9 UCB Protection Technique Classification Restoration techniques can protect the network against: Link failures Fiber-cables cuts and line devices failures (amplifers) Equipment failures OXCs, OADMs, eclectro-optical interface. Protection can be implemented In the optical channel sublayer (path protection) In the optical multiplex sublayer (line protection) Different protection techniques are used for Ring networks Mesh networks

10 UCB Protection in Ring Network 1+1 Path Protection Used in access rings for traffic aggregation into central office 1:1 Line Protection Used for interoffice rings 1:1 Span and Line Protection Used in metropolitan or long- haul rings

11 UCB Protection in Mesh Networks Working Path Backup Path Network planning and survivability design Disjoint path idea: service working route and its backup route are topologically diverse. Lightpaths of a logical topology can withstand physical link failures.

12 UCB Reactive A search is initiated to find a new lightpath which does not use the failed components after the failure happens. It can not guarantee successful recovery, Longer restoration time Proactive Backup lightpaths are identified and resources are reserved at the time of establishing the primary lightpath itself. 100 percent restoration Faster recovery Reactive / Proactive Taxonomy

13 UCB Path Switching: restoration is handled by the source and the destination. Normal Operation Line Switching: restoration is handled by the nodes adjacent to the failure. Span Protection: if additional fiber is available. Line Switching: restoration is handled by the nodes adjacent to the failure. Line Protection. Path Protection / Line Protection

14 UCB 1+1 Protection Traffic is sent over two parallel paths, and the destination selects a better one. In case of failure, the destination switch onto the other path. Pros: simple for implementation and fast restoration Cons: waste of bandwidth

15 UCB 1:1 Protection During normal operation, no traffic or low priority traffic is sent across the backup path. In case failure both the source and destination switch onto the protection path. Pros: better network utilization. Cons: required signaling overhead, slower restoration.

16 UCB Shared Protection 1:N Protection Backup fibers are used for protection of multiple links Assume independent failure and handle single failure. The capacity reserved for protection is greatly reduced. Normal Operation In Case of Failure

17 UCB Primary Backup Multiplexing Used in a dynamic traffic scenario, to further improve resource utilization. Allows a wavelength channel to be shared by a primary and one or more backup paths. By doing so, the blocking probability of demands decreases at the expense of reduced restoration guarantee. (An increased number of lightpaths can be established) A lightpath loses its recoverability when a channel on its backup lightpath is used by some other primary lightpath. It regains its recoverability when the other primary lightpath terminates. Multiplexing Techniques

18 UCB Problem Description Given a network in terms of nodes (WXCs) and links, and a set of point-to-point demands, find both the primary lightpath and the backup lightpath for each demand so that the total required network capacity is minimized. Notation N: the set of nodes; L: the set of links; D: the set of demands C ij : the capacity weight for link (ij) W ij : the capacity requirement on link (ij) in terms of # of wavelength Objective Minimize Survivability Design: Joint Optimization Problem

19 UCB 1) Objective function 2) and 3) the flow conservation constraints for demand d ’ s primary path and backup path, respectively. 4) Logical relationship: the backup path consumes link capacity iff the primary path is affected by the fault. 5): Restoration route independent of the failure. 6): Link capacity requirement Integer Programming Formulation

20 UCB Multi-Layer Resilience

21 UCB Multi-Layer Resilience

22 UCB Multi-Layer Counter-Productive Behavior Instant response to Level 1 alarms in high layer causes unnecessary routing activity, routing instability, and traffic congestion Link Down Link recovered through optical protection Routing table Revision (no link) Routing table Revision (with link) Link Rediscovered 10s ms10s seconds ALARM Link in Traffic Source: RHK

23 UCB Multi-Layer Interaction

24 UCB Multi-Layer Interaction

25 UCB Conclusion Different resilience schemes applicable in optical network have been discussed. Network planning and topology design for survivability is computationally intractable and faster heuristic solutions are needed. Multi-layer restoration is a hot point in current optical survivability research. Joint IP/optical restoration mechanism is the trend in next generation optical network.

26 UCB Unidirectional Path Switched Ring (UPSR) Signal sent on both working and protected path Best quality signal selected Receiving Traffic N1 send data to N2 N1 N2 Outside Ring = Working Inside Ring = Protection Sending Traffic N4 N3

27 UCB Unidirectional Path Switched Ring (UPSR) Reply Traffic N2 replies back to N1 Receiving Traffic N1 N2 Outside Ring = Working Inside Ring = Protection N4 N3 Signal sent on both working and protected path Best quality signal selected

28 UCB Bidirectional Line Switched Ring (2-Fiber BLSRs) Sending/Receiving Traffic Sending/Receiving Traffic N1 send data to N2 & N2 replies to N1 Both Rings = Working & Protection N1 N2 N4 N3

29 UCB Bidirectional Line Switched Ring (4-Fiber BLSRs) Sending/Receiving Traffic Sending/Receiving Traffic OC-48 N1 send data to N2 & N2 replies to N1 2 Outside Rings = Working 2 Inside Rings = Protection N1 N2 N4 N3


Download ppt "UCB Protection and Restoration in Optical Network Ling Huang"

Similar presentations


Ads by Google