Download presentation

Presentation is loading. Please wait.

Published byCristian Spensley Modified over 3 years ago

1
CS 2014 Respiratory Partial Pressures and Blood Gasses Christian Stricker Associate Professor for Systems Physiology ANUMS/JCSMR - ANU Christian.Stricker@anu.edu.au http://stricker.jcsmr.anu.edu.au/PP&BG.pptx Christian.Stricker@anu.edu.au http://stricker.jcsmr.anu.edu.au/PP&BG.pptx THE AUSTRALIAN NATIONAL UNIVERSITY

2
CS 2014

3
Aims The students should be familiar with the concepts of atmospheric, barometric and partial pressures; be cognisant of the approximate composition of air; know how water vapour affects partial pressures; be able to describe the O 2 cascade from inspired air to blood; understand physiological principles involved in formulating the alveolar gas equation; recognise the concept of ‘shunt’; and be familiar with standard values for blood gases.

4
CS 2014 Contents Basic terms and concepts Partial pressures of N 2, O 2 and CO 2 Air saturated with water: Partial pressures at following locations: 1.Nose 2.Trachea 3.Alveolus 4.Lung capillary / Artery Blood gas values

5
CS 2014 Gasses & Pressures [kPa] 1 kPa ≈ 10.2 cm H 2 O ≈ 7.5 torr 1 kPa = 1000 N / m 2 1 torr = 0.1333 kPa

6
CS 2014 Atmospheric Pressure (P b ) P atm at sea level = 101.325 kPa = 760 torr. ≡ barometric pressure (P b ) “Force per m 2 exerted against a surface by weight of air above that surface in the atmosphere.” = hydrostatic pressure caused by weight of air above measurement area. A column of air of 1 m 2 in cross- section, measured from sea level to the top of the atmosphere has a mass of about 10 4 kg and a weight of 63·10 4 N.

7
CS 2014 Altitude and P b P b drops exponentially with altitude = density of air drops with altitude. Variable with weather conditions (highs and lows). At 8’848 m, it is ~⅓ of that at sea level. Plane cabins are pressurised to about 2’100 m; ~ 80 kPa.

8
CS 2014 Composition of Air GasVol % N2N2 78.03 O2O2 20.99 CO 2 0.04 H2OH2O~ 0.50 Ar 0.94 Air created over a long time period by bacteria/algae. O 2 has been constant over the last 10 million years. Water content variable, depending on weather (in rain clouds saturated). –Omitted for respiratory conside- rations (small change) as air will become fully saturated in airways. Noble (Ar, He, etc.) and inert gasses (N 2 ) are not metabo- lically relevant.

9
CS 2014 1. Ambient Gas Pressures [kPa] Since 1 mol of gas takes identical volume (22.4 L) irrespective of type of gas, pressure affects all gases identically: concentrations ∞ volume content (F X ) norma- lised to P b (barometric pressure) = partial pressure (P X ). In medical physiology, only N 2 and O 2 are “important”; under normal conditions, CO 2 in inspired air is too small. Partial pressures in ambient air:

10
CS 2014 Water Vapour Pressure Upon inhaling, H 2 O vapour becomes part of air/gas mixture → reduces partial pressures of all inspired gasses (O 2, N 2, CO 2, etc.). In a gas mixture saturated with H 2 O, water vapour pressure equals its partial pressure,. At 37°C, is 6.3 kPa is only dependent on temperature. is NOT dependent on ambient pressure. – is the same at sea level as well as on top of Mt. Everest… –At 19’200 m, P b = 6.3 kPa; therefore = 0 at this altitude (and likewise for any other gas…): Armstrong limit/line. –At 19’200 m, water boils at 37°C.

11
CS 2014 2. Tracheal Gas Pressures In trachea, air gets H 2 O saturated at 37°C. Therefore, some partial pressure stems from H 2 O. Therefore, and are smaller than P b ; i.e. 101.3 - 6.3 kPa = 95 kPa Partial pressures in trachea: Due to H 2 O saturation, drops (21.3 → 20.0 kPa). What happens in alveoli?

12
CS 2014 Conventions for Volume Reporting Measured lung volumes and flows in laboratory: ATPS (ambient temperature & pressure, saturated): not for reporting –Conditions not standardised: ambient T and P; = 6.3 kPa –Reason for saturation: typically ambient T < body T Standard reporting of lung volumes and flow: BTPS (body temperature & pressure, saturated) –Conditions standardized to 37°C; 101.3 kPa and = 6.3 kPa –Reasons: to have a physiologically meaningful measure in regard to lung volume; allows comparisons between patients. Standard reporting of gas volumes (in blood): STPD (standard temperature and pressure, dry) –Conditions standardized to 0°C; 101.3 kPa and = 0 kPa –Conversion to BTPS: V BTPS = 1.21 V STPD.

13
CS 2014 Gas Transport to and from Periphery Total gas volume transport is dependent on cardiac output /venous return (~ 5 L/min). Relationship between O 2 uptake and CO 2 elimination. –More O 2 is taken up than CO 2 is breathed off. –Respiratory quotient (at rest, mixed food intake): Rhoades & Pflanzer 2003

14
CS 2014 Gas Exchange in Alveoli So far, no gas exchange was considered. In alveoli, O 2 is taken up into blood → ↓. At same time, CO 2 is exchanged → ↑. For equimolar exchange, ↓ matched with ↑. As less CO 2 produced than O 2 consumed, something has to “patch” the drop in partial pressure: dissolved N 2 in blood.

15
CS 2014 3. Alveolar Gas Pressures In alveoli, as CO 2 is exchanged, O 2 is taken up. Under “normal” conditions corresponds to 5.3 kPa; i.e. is reduced by this amount: Holds if metabolism produces same CO 2 volume as O 2 is utilised / burnt; i.e. for glucose… Correction needed for how CO 2 is made from O 2 : respiratory quotient (“normal” metabolism) i.e. Difference of 1.3 kPa from dissolved N 2 → ↑.

16
CS 2014 Determinants of Gas Exchange Structural elements: –Film on alveolar walls: watery solute. –Cell membrane: lipids. –Blood plasma: watery solute. Gas exchange ( ) via diffusion –scales with membrane surface area (A) and thickness (a), difference in partial pressure ( ) and diffusion capacity of the lung D L (CO to det.), –which is dependent on solubility, »directly ~ to difference in partial pressure; »indirectly ~ to temperature (T). –Solubility of CO 2, O 2 and N 2 in water depends on temperature (T). In fever, less is dissolved in body fluids. In hypothermia much more (avalanche). CO 2 solubility at 37°C is ~23 x better than that for O 2, which is ~ 2 x better than that for N 2.

17
CS 2014 Diffusion from Alveolus to EC Diffusion over many different media. –All steps “resist” free diffusion: ↓. –Membrane diffusion rate (D M ) limited by sum of D 0 + … + D 10 (in series). –Binding of O 2 to haemoglobin takes time and also “resists” free diffusion (D H ). –Normally, D M ≈ D H such that Under normal conditions, O 2 exchange is perfusion limited. –Blood spends sufficient time in pulm. capillary to fully equilibrate with ; –BUT can become diffusion limited in pathology (interstitial fibrosis) or under strenuous exercise / at high altitude. Similar for CO 2, just faster…

18
CS 2014 4. Arterio-Venous Difference O 2 concentration at end of lung capillary: 13.4 kPa (a’). –Practically not possible to measure easily. O 2 concentration in aorta: 12.0 kPa (a). –Practically taken from a peripheral artery (femoral/brachial). O 2 difference is result of venous admixture (heart) –Called shunt. O 2 concentration in right atrium: 5.3 kPa ( ). –Average concentration as venous blood is mixed with different O 2 extraction rates in various parts of body. Arterio-venous difference (a - ): 6.7 kPa. – drops by ~ 60%: extraction from blood. –A large amount of O 2 remains “bound” in blood (partial extraction). –In particular vascular beds, this difference can be much larger (heart muscle; leg muscles in a marathon runner…).

19
CS 2014 Arterial Blood Gas Values AnalyteReference Range 9.3 – 13.3 kPa 4.7 – 6.0 kPa pH7.35 – 7.45 HCO 3 - 22 – 26 mmol/L Total CO 2 25 – 30 mmol/L Values for different analytes are given incl. reference ranges. –not to be known by heart! Arterial values vary considerably. Link to acid-base control via CO 2 (see lecture series by K. Saliba).

20
CS 2014 Review of Changes in Axis along bottom indicates distance from nose. At each step, ↓. Note notation.

21
CS 2014 Overview of Gas Pressures Under resting conditions and with a “normal” metabolism. Values in arteries/veins can be measured directly (blood gas analysis). Without diffusion barriers, can be determined from blood gas. ↑ in alveoli because R is 0.8; i.e. insufficient CO 2 is produced. As a consequence ↑. ↑ in arteries due to venous admixture into arterial blood (shunt). Total pressure in veins ↑.

22
CS 2014 Take-Home Messages P b drops with altitude; it is ~⅓ of normal on Mt. Everest. For purpose here, air consists of 79% N 2 and 21% O 2. Water vapour pressure is 6.3 kPa at all pressures. Reporting of lung and gas volumes in BTPS & STPD, resp. In alveolus, O 2 is exchanged for CO 2 at a relative volume described by respiratory quotient R = 0.8. Alveolar gas equation describes. Gas exchange is via diffusion of dissolved gas, governed by gas solubility ( » > ). Under normal conditions, blood is sufficiently long in alveolar capillary to fully saturate ( ). Arterial O 2 value is smaller due to shunt.

23
CS 2014 MCQ A 25 year-old medical student ascends the summit of Mt. Blanc in France (4810 m). Assuming standard barometric pressure at this altitude (P b = 55.4 kPa), a normal metabolism and a CO 2 concentration of 4.2 kPa, which of the following values best describes the predicted alveolar partial pressure for O 2 on Mt. Blanc? A.8.3 kPa B.7.5 kPa C.6.2 kPa. D.5.1 kPa E.4.7 kPa

24
CS 2014 That’s it folks…

25
CS 2014 MCQ A 25 year-old medical student ascends the summit of Mt. Blanc in France (4810 m). Assuming standard barometric pressure at this altitude (P b = 55.4 kPa), a normal metabolism and a CO 2 concentration of 4.2 kPa, which of the following values best describes the predicted alveolar partial pressure for O 2 on Mt. Blanc? A.8.3 kPa B.7.5 kPa C.6.2 kPa. D.5.1 kPa E.4.7 kPa

Similar presentations

Presentation is loading. Please wait....

OK

Gas Transport in the Blood

Gas Transport in the Blood

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Monopolistic competition short run ppt on tv Ppt on book one minute manager Ppt on 5 great scientists of india Ppt on packet switching networks Ppt on importance of friction in our daily life Ppt on history of olympics in united Ppt on holographic technology companies Ppt on all windows operating system Download ppt on area of parallelogram and triangles Ppt on water resources in civil engineering