Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ambesh Dixit Indian Institute of Technology Jodhpur Solar Selective Coatings Importantance in CSP Technology SCHOTT Solar Inc.

Similar presentations

Presentation on theme: "Ambesh Dixit Indian Institute of Technology Jodhpur Solar Selective Coatings Importantance in CSP Technology SCHOTT Solar Inc."— Presentation transcript:

1 Ambesh Dixit Indian Institute of Technology Jodhpur Solar Selective Coatings Importantance in CSP Technology SCHOTT Solar Inc.

2 Parabolic Trough: an example Radiation from the Sun transformed into thermal energy Used for Heating air or water/fluid media SCHOTT Solar Inc.

3 Presentation flow Solar thermal applications A bit about receiver tube and its design Spectral selectivity Selective absorbers with examples Mechanisms for solar spectral selectivity Solar absorber design constraints Physical process (RF/DC magnetorn sputtering) Chemical process (Sol-gel process) Surface engineering for enhanced solar absorption Conclusions

4 Temperature ranges for solar thermal applications Low temperature (< 100 0 C) Water heating and swimming pools Medium temperature (< 350 0 C) Space heating or cooling and water desalination High temperature (> 350 0 C) Mechanical energy production and catalytic dissociation of water, CSP (concentrating solar power ~ 500 0 C or more)

5 Receiver is an important Component in Parabolic Trough Collectors A receiver should comply with Low thermal losses ( vacuum, absorber with low thermal emittance) High solar absorptance ( efficient absorber, highly transmitting outer glass tube )

6 For power plant with a life span of more than 20 years is required to Match the long operational sustainability. Keep maintenance costs low during operation. During operation receivers are mechanically and thermally stressed. Most important issues are: Durability of glass-to-metal seal Stability of vacuum (low hydrogen permeation, appropriate getter) Durability of absorber coating (only small degradation of efficiency acceptable) Abrasion resistance of anti-reflective glass coating.

7 Performance data: Temperature stable up to 500 °C Solar absorptance >= 95 % Thermal emittance <= 10% at 400°C Material: Polished low-carbon steel as substrate material W-Al 2 O 3 Multilayer Cermet coating Selective Absorber with Multilayer CERMET for High Temperatures steel AR-coating cermet SCHOTT Solar Inc.

8 Spectral selective surface: Non-selective surfaces Moderate selective surfaces Selective surfaces Performance quantification: Solar absorptance: Absorbed fraction of incoming radiation Thermal emittance: Emitted fraction of absorbed energy through infrared radiation Selective absorbers can accomplish this requirement by having (i) high solar absroptivity and (ii) high thermal reflectivity simultaneously

9 Different mechanisms for solar spectral selectivity (i) Semiconductor with suitable band gaps (ii) Optical interference effect of a multilayer stack of thin films (iii) Materials, which are black for solar wavelengths but transparent for heat like metal-ceramic nanocomposites (called CERMET) (iv) Metallic surface with designed roughness Multiple reflections of the light inside surface groves -> enhanced solar absorption Examples: Black chrome Black zince, cobalt, nickel Copper oxide, iron oxide, aluminum oxide Electroplating Technique Solar absorption ~ 0.9 Thermal emittance ~ 0.1

10 Material Absorptance ( ) Emittance ( ) Break down temparature (°C) Comments Black silicon paint 0.86-0.940.83-0.89350 Slicone binder Black silicon paint 0.90.5 Stable at high temperature Black copper over copper 0.85-0.90.08-0.12450 Patinates with moisture Black chorome over nickel 0.92-0.940.07-0.12450 Stable at high temperatures Jan F. Kreider et al Solar Design (1989)

11 As a designer for solar absorbers: A serious look into solar irradiance & Black body radiation @ 300 0 C: BB radiation 2 m – 30 m No overlap between these two curves Possible to prepare surfaces that may absorb the soalr wavelengths and emitt poorly at thermal infra- red wavelength. Different names: Bandpass reflection filters Black infrared mirrors Spectrally selective absorbers/coatings = Transmissivity = Reflectivity g = Absorptivity

12 Number of choices to fabricate solar selective coatings Combination of various mechanisms to control and improve the optical property of an absorber layer such as Textured surface with required spectral selectivity, graded cermet or double cerment structure Equiped with an anti-reflectition layer may exhibit enhanced spectral selectivity Such structures may result in good solar absorptance ~ 0.98 and poor thermal emittance ~ 0.02 or less, yet these structures are complicated and thickness sensitive. As a designer for solar absorbers:

13 Solutions: Improve the selectivity of cermet based absrobers in single layer geometry surface roughness on the absorber/air interface (laser structuring) Easy thin film process such as sol-gel for quick fabrication of thin films and tunability using stable colloidal suspensiions of nano-powders for cermat composites As a designer for solar absorbers:

14 Vapour deposition Thermal evaporation e-beam evaporation Chemical vapour deposition Physical vapour deposition Molecular beam epitaxy RF/DC magnetron sputtering Pulse laser deposition (PLD) Thin film Coating Process Physical Chemical Electrodeposition Chemical deposition Spraying Sol-gel Metal organic deposition (MOD)

15 Advantages Excellent process control Low deposition temperature Dense, adherent coatings Elemental, alloy and compound coatings possible Disadvantages Vacuum processes with high capital cost Limited component size treatable Relatively low coating rates In both cases the source material is a solid (metal or ceramic). A reactive gas may be used in the deposition chamber to deposit compound coatings from an elemental source or maintain the stoichiometry of coatings from compound sources. Typical coating thicknesses range from 1-5 m Low pressure coating processes in which the coating flux is produced by a physical process. There are two main types: Evaporation Sputtering

16 Physical: RF/DC magnetron sputtering process Main sputtering processes: DC diode sputtering (for conducting targets) RF sputtering (for insulating targets)

17 Mostly used for low deposition temperatures. No post deposition heat treatment required. Fine thickness control. Easy to dope with noble metals. The coating rate scales with the electrical power used to sustain the discharge. The coating rate also depends on the plasma density, so techniques to increase this (e.g. by confining the electrons close to the target using magnets) will increase the coating rate. However, as much as 95% of the power is dissipated as heat in the target so good cooling is essential. Materials may be deposited using sputtering Metal oxide such as aluminum oxide, copper oxide, iron oxide etc Metal nitrides such aluminum nitrides, titanium nitrides etc easy to dope simultaneously during growth.

18 Numerous materials: Our Target: High solar absorptance (~ 0.95 or more) and low emittance (~0.05 or less) for high tempe- rature applications Systems of choice- Aluminum nitride (AlN) based cermets coatings using RF/DC sputtering Stable at high temperature (> 500 0 C), radiation resist, high absorptance and low emittance


20 Chemical: Sol-gel process Advantages Low temperature treatment Easy synthesis process Can coat complex shapes uniformly Hard particles can be incorporated to increase hardness Can coat most metals and insulators Disadvantages Film quality is not comparable with physical process Heat treatment is necessary to develop the desired material stoichiometry and properties

21 Numerous materials- Our Target: High solar absorptance (~ 0.95 or more) and low emittance (~0.05 or less) for moderate temperature applications Systems of choice- Chromium oxide (Cr 2 O 3 ) based cermets coatings using solution process Easy to fabricate, state at intermediate temperature, high absorptance and low emittance

22 Sol-Gel coating for borosilicate glass based on alcoholic dilutions with SiO 2 nano- particles for improved abrasion resistance Solar transmittance of > 0,96 achieved Challenges in production: - homogenous and stable coating of long glass tubes - automated high precision solar transmittance test for long glass tubes AR Coating with High Solar Transmittance Only glass: = 92% With AR-coating : > 96% Surface engineering by

23 Conclusions Solar selective coatings are important for numerous solar thermal applications. Stable high temperature solar selective coatings are essential to realize CSP applications. Nitrides based CERMET coatings may be promising candidates for CSP applications, where temperature may go beyond 500 0 C. Sol-gel process may be explored for development of oxide based CERMET coatings. Surface engineering may enhance the solar absorption beyond the materials intrinsic limit enhancing multiple reflection assisting absorption by reducing bulk reflection.

24 Acknowledgement Prof. Rajiv Shekhar (a driving force) Dr. Laltu Chandra Mr. Ritesh Patel Funding agency- MNRE

25 Thank you & ????

Download ppt "Ambesh Dixit Indian Institute of Technology Jodhpur Solar Selective Coatings Importantance in CSP Technology SCHOTT Solar Inc."

Similar presentations

Ads by Google