Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dissipative dynamics of spins in quantum dots

Similar presentations


Presentation on theme: "Dissipative dynamics of spins in quantum dots"— Presentation transcript:

1 Dissipative dynamics of spins in quantum dots
O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

2 Collaborators Harry Westfahl Jr. – LNLS – BRAZIL
Frederico Borges de Brito – UNICAMP – BRAZIL Gilberto Medeiros-Ribeiro – LNLS – BRAZIL Maya Cerro – UNICAMP/LNLS – BRAZIL

3 Uma breve preparação O que é dissipação quântica? Movimento dissipativo + Mecânica quântica

4 Movimento dissipativo

5 Movimento dissipativo
Movimento em um meio viscoso Dissipação + Flutuações O movimento Browniano

6 A Mecânica Quântica através de alguns exemplos
O tunelamento de uma partícula quântica

7 A Mecânica Quântica através de alguns exemplos
O tunelamento coerente de uma partícula quântica

8 Mecânica Quântica X Dissipação
A mecânica quântica se aplica a sistemas nas escalas atômicas e sub-atômicas: sistemas isolados ou sujeitos a interações externas controladas. A dissipação ocorre em sistemas macroscópicos sujeitos à influência (incontrolável) do ambiente onde estão inseridos.

9 ? Onde os dois efeitos podem ser simultaneamente observados? Clássico
(macroscópico) Quântico (microscópico)

10 Superconducting Quantum Interference Devices (SQUIDs):
Sistemas meso e nanoscópicos H Superconducting Quantum Interference Devices (SQUIDs): O paradigma

11 Tunelamento coerente de partículas magnéticas
Sistemas magnéticos Partículas magnéticas Tunelamento coerente de partículas magnéticas ( spins por partícula)

12 Sistemas de dois níveis
Vários sistemas aqui apresentados envolvem sobreposições de duas configurações

13 Dispositivos e qubits Dissipação destrói a coerência necessária para o funcionamento do processador quântico: descoerência

14 NANO ??? Um possível candidato a qubit
Spin eletrônico em pontos quânticos

15 Introduction Main goal Candidates and drawbacks
Study of the possibility of implementation of solid state qubits: spins in self assembled quantum dots Candidates and drawbacks Photons » non-interacting entities Optical Cavity » weak atom-field coupling ion traps » short phonon lifetime NMR » low signal Superconducting devices » decoherence Spins in quantum dots » ?

16 Quantum bits (DiVincenzo '01)
Well defined two level system Single electron spin Quantum dots: Coulomb blockade + Pauli exclusion Addressing Well defined energy splittings g-factor (Landé) engineering Reset Energy splitting » kT Electronic Zeeman frequency Gates Resonant EM Field Microcavity Long decoherence times Isolated from dissipative channels Strong electronic confinement

17 Quantum bits (DiVincenzo '01)
Well defined two level system Single electron spin Quantum dots: Coulomb blockade + Pauli exclusion

18 Self Assembled Quantum Dots
STM scans of self-assembled island formation through epitaxial growth of Ge on a Si substrate. Left scans: 50nm x 50nm. Right scan: 35nm x 35nm (Courtesy of G. Medeiros-Ribeiro)

19 Electronic confinement
Dots Model

20 Electronic confinement
Coulomb Blockade 1e 2e 5e 3e 4e 6e s-shell p-shell by G. Medeiros-Ribeiro

21 Quantum bits (DiVincenzo '01)
Addressing Well defined energy splittings g-factor (Landé) engineering Reset Energy splitting » kT Electronic Zeeman frequency

22 Addressing and resetting
g-factor engineering samples A, D sample C gB gC gA gA gA gA SRL- strain reducing layer G. Medeiros-Ribeiro, E. Ribeiro, H. W. Jr., Appl. Phys. A, 2003; cond-mat/

23 Quantum bits (DiVincenzo '01)
Gates Resonant EM Field Microcavity Long decoherence times Isolate from dissipative channels Strong electronic confinement

24 Dissipative spin dynamics
Magnetic moment (red vector) in a magnetic field (brown vector) : the conservative dynamics Precession of the moment around the external field direction

25 Dissipative spin dynamics
Relaxation dynamics Landau-Lifshits damping (yellow arrow) drives the system towards a collinear state

26 Dissipative spin dynamics
Noise Fluctuating terms (green arrow) to our equations of motion

27 Microscopic dissipative spin dynamics
Quantum noise and dissipation Damping and Noise from microscopic interaction with lattice phonons Static Field: Oscillating Field (microcavity): Noise+Fluctuations: Phonons

28 Microscopic dissipative spin dynamics
Quantum dissipation formulation: Noise and dissipation x z y

29 Microscopic dissipative spin dynamics
Bloch-Redfield equations Linear differential equations of motion (quantum average of components) x z y Determined by noise time correlation function

30 Electrons: Fluctuating magnetic field (noise)
Orbital degrees of freedom: 2D Harmonic Oscillator states Electrons: Deformation Potential Magneto-elastic e-Ph interaction: Piezoelectric Phonons: Acoustic Optical Spin-Orbit Interaction: Dresselhaus Rashba Fluctuating magnetic fields

31 Dissipation Mechanism
No bath No spin-orbit interaction

32 Dissipation Mechanism
No bath Spin-Orbit interaction

33 Dissipation Mechanism
Orbital contact with the phonon bath Non-interacting spin and orbit

34 Dissipation Mechanism
Orbital contact with the phonon bath Spin-orbit interaction Indirect spin entanglement with the bath

35 Electronic Confinement
Lateral - LQD (Hanson et al ’03) - VQD (Fujisawa et al ’02) - SAQD (Medeiros-Ribeiro et al ’99) Vertical (frozen): Spin-Orbit Hamiltonian: parameters:

36 Acoustic Phonon Bath Approximate form of the Hamiltonian GaAs
“orbital” bath spectral function InAs piezoelectric deformation potential

37 Effective Bath of Oscillators
Laplace transform of the equations of motion for the spin: allows us to define an effective spectral function Equivalent Hamiltonian:

38 Spin Orbit Phonon bath As seen by the spins... where
B is the generalized incomplete beta function

39 Bath resonance Behaviour of the effective bath spectral function
H. W. Jr. et al. Phys. Rev B. 70 (2004) Behaviour of the effective bath spectral function Piezoelectric coupling:

40 Dissipative Mechanism
Bath resonance Dissipative Mechanism weak coupling strong coupling

41 Effective spectral function
Low frequency limit ( and ) Always super-ohmic See also (Khaetskii & Nazarov '01) High frequency limit ( ) Can be ohmic!

42 Microscopic dissipative spin dynamics
General expression for the microscopic spin dynamics: The Bloch-Redfield equation x z y

43 Microscopic dissipative spin dynamics
General expression for the coefficients is the free spin time evolution operator

44 Microscopic dissipative spin dynamics
Long time asymptotic behavior (No driving) Damped precession around the static field direction

45

46 Microscopic dissipative spin dynamics

47 Microscopic dissipative spin dynamics

48 Driven spin dynamics Transverse external field
Useful parameters for the model detuning effective field amplitude dephasing

49 Driven spin dynamics Peaks:

50 Driven spin dynamics Peak:

51 Driven spin dynamics Two distinct time regimes Long time dynamics
Short time dynamics

52 Resonant dynamics Long time dynamics

53 Resonant dynamics Very long decoherence (relaxation) times
Good for keeping quantum information Bad for reseting

54 Resonant dynamics Very long decoherence (relaxation) times
Good for keeping quantum information Bad for reseting

55 Resonant dynamics Short time dynamics

56 Resonant dynamics Very long decoherence (relaxation) times
Good for keeping quantum information Bad for reseting

57 Resonant dynamics Very long decoherence (relaxation) times
Good for keeping quantum information Bad for reseting Resonance dominated

58 Resonant dynamics

59 Resonant dynamics Bulk values

60 Off-resonance dynamics
Bulk values

61 Bath assisted cooling Reset pulses
A. E. Allahverdyan et al., Phys. Rev. Lett. 93 (2004) Reset pulses Use the large dissipation mechanism (cooling) Reset times O(ns) A high degree of polarization can be achieved in short times with a sequence of (ns) short pulses

62 Summary Thanks: HP-Brazil, FAPESP, CNPq
Indirect dissipation mechanism: Spin Orbit Phonon Non-perturbative approach reveals a new resonance and new regimes of dissipation Perturbative regime only valid for large confinement energies (SAQD) Solution of the Bloch-Redfield equations reveals two dynamical regimes Short time dynamics dominated by the bath resonance Thanks: HP-Brazil, FAPESP, CNPq


Download ppt "Dissipative dynamics of spins in quantum dots"

Similar presentations


Ads by Google