Download presentation

Presentation is loading. Please wait.

Published byMeagan Chapman Modified about 1 year ago

1
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone, Karyn Le Hur

2
Outline of the talk Three transverse concepts in mesoscopic physics 1)Quantum coherence (electrons are also waves) 2)Interactions (electrons are not social people) 3) Spin degree of freedom Mesoscopic and nanoscopic physics

3
I.Mesoscopic Capacitor (Quantum RC circuit) II.Adding Coulomb interactions III.Giant peak in the charge relaxation resistance Outline of the talk

4
Mesoscopic capacitor or the quantum RC circuit Gwendal Fève, Thesis (2006) D. Darson

5
The Quantum RC circuit Lead: Single-mode Spin polarized Gate AC excitation Dot Classical circuit Vg ~ Low frequency response B QPC The quantum RC circuit Linear response theory Gabelli et al. (Science, 2006)Fève et al. (Science, 2007)

6
Mesoscopic Capacitor l < m Gabelli et al. (Science, 2006) Fève et al. (Science, 2007) Meso, ENS Quantum dot in a microwave resonator dispersive shift of the resonance: capacitance broadening (dissipation): resistance Mesoscopic capacitor D. Darson Delbecq et al. (PRL, 2011)Chorley et al. (PRL, 2012)Frey et al. (PRL, 2012)

7
Mesoscopic Capacitor Quantum dot in a microwave resonator dispersive shift of the resonance: capacitance broadening (dissipation): resistance Microwave Resonator Delbecq et al. (PRL, 2011)Frey et al. (PRL, 2012)

8
Energy scales Charging Energy Level spacing Excitation frequency Dwell time Experiment on the meso. capacitor, LPA ENS Energy scales

9
Differential capacitance Opening of the QPC: from Coulomb staircase to classical behaviour Cottet, Mora, Kontos (PRB, 2011) Differential capacitance

10
Electron optics Similar to light propagation in a dispersive medium Buttiker, Prêtre, Thomas (PRL, 1993) Ringel, Imry, Entin-Wohlman (PRB, 2008) Electron optics Wigner delay time

11
Experimental results Gabelli et al. (Science, 2006) Fève et al. (Science, 2007) Oscillations Experimental results

12
Adding Coulomb interactions

13
Pertubative approaches Weak tunneling Strong tunneling (weak backscattering) B Hamamoto, Jonckheere, Kato, T. Martin (PRB, 2010) Mora, Le Hur (Nature Phys. 2010)

14
Universal resistances Results for small frequencies Small dotLarge dot Confirms result for finite dot, new result in the large dot case Universal resistances Hamamoto, Jonckheere, Kato, T. Martin (PRB, 2010) Mora, Le Hur (Nature Phys. 2010)

15
divergence for Mapping to the Kondo hamiltonian (0 and 1 -> Sz = -1/2,1/2) 01 Charge states Correspondance Matveev (JETP, 1991) Kondo mapping

16
Korringa-Shiba relation At low frequency and therefore Shiba (Prog. Theo. Phys., 1975) Garst, Wolfle, Borda, von Delft, Glazman (PRB, 2005) Korringa-Shiba relation

17
Energy conservation at long times (low frequency) Probability of inelastic scattering process small Usual Fermi liquid argument of phase-space restriction Even in the presence of strong Coulomb blockade Aleiner, Glazman (PRB,1998) Dominant elastic scattering

18
Weak tunneling regime Fermi liquid approach Original model Low energy model Power dissipated under AC drive Linear response theory related to through Friedel sum rule Filippone, Mora (PRB 2012)

19
Giant peak in the charge relaxation resistance

20
Giant peak in the AC resistance M. Lee, R. Lopez, M.-S. Choi, T. Jonckheere, T. Martin (PRB, 2010) Fermi liquid approach Peak comes from Kondo singlet breaking Filippone, Le Hur, Mora (PRL 2011)

21
Perturbation theory (second order) Fermi liquid approach Charge susceptibilities Charge-spin modes Kondo limit remains small charge frozen

22
Conclusion Prediction of scattering theory is recovered with an exact treatment of Coulomb interaction Novel universal resistance is predicted for a large cavity Peak in the charge relaxation resistance for the Anderson model Mora, Le Hur (Nature Phys. 2010) Conclusions Filippone, Le Hur, Mora (PRL 2011) Filippone, Mora (PRB 2012)

23
Perturbation theory (second order) Anderson model M. Lee, R. Lopez, M.-S. Choi, T. Jonckheere, T. Martin (PRB, 2010) At zero magnetic field Monte-Carlo calculation

24
Perturbation theory (second order) Fermi liquid approach Charge susceptibilities Charge-spin modes Kondo limit remains small charge frozen

25
Perturbation theory (second order) Fermi liquid approach M. Lee, R. Lopez, M.-S. Choi, T. Jonckheere, T. Martin (PRB, 2010) Filippone, Le Hur, Mora (PRL 2011)

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google