Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.

Similar presentations


Presentation on theme: "Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA."— Presentation transcript:

1 Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB) Palma de Mallorca (SPAIN) Llorenç Serra Outline: Introduction: experimental motivation Level structure in horizontal B Vertical B: spin precession Far Infrared absorption Confinement induced by SO Collaborators: Manuel Valín-Rodríguez (Mallorca) Antonio Puente (Mallorca) Enrico Lipparini (Trento)

2 Introduction: experimental motivation Experiments: level splittings of 1-electron quantum dots in B || Hanson et al, PRL 91,196802 (2003)

3 Potok et al, PRL 91, 016802 (2003) splitting (  eV ) B || (T) | g | = 0.37 | g | = 0.44

4 Origin of the deviations ? * Extension of the wf’s in AlGaAs region (g=+0.4) * Nuclear polarization effects (hyperfine) * Non parabolicity of the bands What is the role of typical spin-orbit couplings of semiconductors?

5 I. QD levels in a horizontal B Model of spatial confinement: 2D representation (strong z confinement) effective mass model (GaAs conduction band) parabolic potential in xy plane The Zeeman term: bulk GaAs gyromagnetic factor Bohr magneton Pauli matrices B x y  z

6 The Zeeman scenario eigenstates: Laguerre polynomials eigenspinors in direction of B sp energy levels spin splitting

7 Natural units:

8 The SO coupling terms conduction band (3D) * linear Dresselhaus term (bulk asymmetry) in 2D quantum wells [001]: ( z 0 vertical width ) coupling constant

9 * Rashba term (nanostructure z asymmetry) ( E vertical electric field ) Rashba and Dresselhaus terms: * used to analyze the conductance of quantum wells and large (chaotic) dots  R and D uncertain in nanostructures (sample dependent!) in GaAs 2DEG’s: 5 meV Å - 50 meV Å * tunability of the Rashba strength with external fields (basis of spintronic devices) We shall treat R and D as parameters

10 No exact solution with SO, but analytical approximations in limits: a) Weak SO in zero field fine structure: zero-field up-down splitting ! Kramers degeneracy 2nd order degenerate pert. theory an alternative method: unitary transformation

11 b) Weak SO in large field definitions - new fine structure of the major shell - (  dependence) anisotropy! Intermediate cases only numerically, - xy grid - Fock-Darwin basis

12 Parameters : Typical level spectra with SO

13 Anisotropy of first two shells at large B Isotropic when only one source S ymmetry! Position of gap minima depend on

14 anisotropy + zero field splitting + position of minima QD energy levels could determine the lambda’s (need high accuracy!) Systematics of first-shell gap

15 In physical units: below Zeeman | g *|  B B (level repulsion)  0 dependence | g *|  B B

16 Second shell: two gaps (inner, outer) zero field value  0 dependence

17 Experimental results from QD conductance: 1 electron occupancy Potok et al., Phys. Rev Lett. 91, 018802 (2003) Hanson et al., Phys. Rev Lett. 91, 196802 (2003) BUT: zero field splitting of 2nd shell?  - anisotropies? splitting (  eV ) B || (T) | g | = 0.37 | g | = 0.44

18 SO effects in GaAs are close to the observations BUT only for a given B orientation. Determination of the angular anisotropy and zero field splittings are important to check the relevance of SO in these experiments. M. Valín-Rodríguez et al. Eur. Phys. J. B 39, 87 (2004)

19 II. QD levels in a vertical B As before, the Zeeman term: B x y z BUT now, B also in spatial parts: Symmetric gauge

20 energy levels (without SO) at large field SO coupling redefines magnetic field weak SO (unitary tranformation)

21 Spin precession without SO: The Larmor theorem The Larmor frequency equals the spin-flip gap Spin precession with SO

22 spin-flip (precessional) transition (N = 7, 9, 11)

23 Real time simulations No interaction

24 Real time simulations: time-dependent LSDA

25 M. Valín-Rodríguez et al. Phys. Rev. B 66, 235322 (2002)

26 Deformation allows the transition between Kramers conjugates at B=0

27 M. Valín-Rodríguez et al. Phys. Rev. B 69, 085306 (2004)

28 Strong variation with tilting angle:

29 Far Infrared Absorption (without Coulomb interaction): splitting of the Kohn mode at B=0

30 Far Infrared Absorption with Coulomb interaction: restores Kohn mode (fragmented) characteristic spin and density oscillation patterns at B=0

31 Confinement induced by SO modulation: Rashba term bulk bands localized states

32 Conclusions: * In horizontal fields SO effects are small, but they are close to recent observations. Zero field splittings and anisotropies are also predicted. * In vertical fields the SO-induced modifications of the g-factors are quite important. * Possibility of confinement induced by SO ?


Download ppt "Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA."

Similar presentations


Ads by Google