Presentation is loading. Please wait.

Presentation is loading. Please wait.

PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.

Similar presentations


Presentation on theme: "PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert."— Presentation transcript:

1 PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert Heinsius – Universität Bochum 23.10.2008

2 PANDA Physics Program  pp- and  p A-annihilation: beam momentum 1.5-15 GeV/c Meson spectroscopy - charmonium states - open charm production - exotic matter -glueballs -hybrids -molecules - light mesons Baryon-Antibaryon production Charm in nuclei Hypernuclei physics Hadrons in nuclear medium Electromagnetic processes

3 Antiprotons at FAIR: PANDA HESR PANDA antiprotons 1.5-15 GeV

4 Production of particles in  pp annihilation Example: glueballs and hybrids Production in  pp collisions All J PC allowed (including exotic, non q  q ) Formation in  pp collisions All J PC allowed for q  q can be generated p p _ G M p M H p _ p M H p _ p p _ p p _ H p p _ H G  ~ 1  b  ~ 100  pb

5 Why Antiprotons for Heavy Flavour Spectroscopy? high resolution spectroscopy with  p-beams in formation experiments: Δm given by ΔE beam (beam cooling) 35003520 MeV3510 CBall ev./2 MeV 100 E CM e + e - interactions: – Only 1 -- states are directly formed – Other states only by secondary decays moderate mass resolution  pp reactions: –All charmonium states directly formed –very good mass resolution CB E835 1000 E 835 ev./pb  c1 Crystal Ball, Edwards et al. PRL 48 (1982) 70 E835, Ambrogiani et al., PRD 62 (2000) 052002

6 Example:  c1 and  c2 scans at Fermilab E835 22 Measured rate Beam Resonance cross section Crystal Ball: typical resolution ~ 10 MeV Fermilab: 240 keV PANDA: ~30 keV 11 M. Andreotti et al.,Nucl.Phys.B717:34-47,2005.  =0.88 ± 0.05 ± 0.03 MeV  =1.92±0.19 ± 0.01 MeV

7 E CM HESR – High Energy Storage Ring for  p Parameters of HESR Injection of  p at 3.7 GeV Slow synchrotron (1.5-15 GeV/c) Storage ring for internal target operation Luminosity up to L~ 2x10 32 cm -2 s -1 Beam cooling stochastic:  p/p ~ 10  electron up to 8.9 GeV:  p/p < 4. 10  Resonance scan Energy resolution ~50 keV Tune E CM to probe resonance Get precise mass and width

8 PANDA Targets Parameters of HESR Injection of  p at 3.7 GeV Slow synchrotron (1.5-15 GeV/c) Storage ring for internal target operation Luminosity up to L~ 2x10 32 cm -2 s -1 Beam cooling stochastic:  p/p ~ 10  electron up to 8.9 GeV:  p/p < 4. 10  Internal targets 4. 10 15 H/cm 2 Pellets Cluster jet Nuclei: Be, C, Si, Al

9 At present a group of more than 350 physicists in 15 countries U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen U Helsinki IKP Jülich U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk LAL Orsay U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia SMI Vienna SINS Warsaw U Warsaw PANDA Collaboration

10 PANDA - Detector ~12 m Target Spectrometer Forward Spectrometer 2T superconducting solenoid + iron return yoke 2Tm dipole magnet Target p 2. 10 7 interactions/s 4  solid angle

11 PANDA – Vertex Detector Silicon Microvertex Detector vertex reconstruction for decaying particles: < 100  m

12 PANDA - Tracking Silicon Microvertex Detector Central Tracker Straw tubes TPC Forward Tracker GEM Drift Ch. momentum resolution  p/p ~ 1%

13 PANDA – Particle ID Muon Detectors: MDT Barrel DIRCEndcap DIRCForward RICH Forward TOF charged particle identification e, , , K, p, …

14 PANDA – Electromagnetic Calorimeter Barrel EMC Forward EMC few MeV to 15 GeV EMC TDR arXiv:0810.1216

15 Physics – QCD bound states Charmonium –below threshold: h c –above threshold X(3872) predictions Y(4260) simulations Glueballs and Hybrids –PANDA simulation D-spectroscopy –D s0 * production at threshold

16 Charmonium spectroscopy  c J/  2  '  '' hep-ph/0211220

17 Charmonium: Open questions Below D  D threshold –All predicted states detected, but –Lack of precise measurement of mass, width and branching ratios (i.e.  c,  c ', h c ) PANDA contributions?

18 Charmonium below D  D threshold: h c CLEO 13 events N=168 ± 40 PR D72, 032001 (2005) PRL 95, 102003 (2005) determine spin contribution of confinement potential from –precise mass measurement required two recent measurements –CLEO: e + e - →  (2S)→h c  0 h c →  c   c →hadrons –E835:  pp→h c, h c →  c   c →  PANDA –scan with high luminosity and precision –detect hadronic decay modes E835 m(h c )=(3524.4±0.6±0.4) MeV m(h c )=(3525.8±0.2±0.2) MeV

19 Charmonium: Open questions Above D  D threshold –only 4 vector states detected (not all unambiguously confirmed) –diagnostic of long range spin dependant  qq potential (e.g. 2P and 1D states) –appearance of several new resonances (unclear nature)

20 Charmonium above D  D threshold  (4040),  (4160),  (4415) –broad structures observed in R=  (e + e - → hadrons)/  (e + e - →  ) –lack unambiguous confirmation 1D states –only  (3770) observed 2P states –possibly Y(3940), Z(3990)? PANDA –perform search for undetected states –establish quantum numbers (high statistics)

21 New resonances above D  D threshold X(3872) (→J/      D 0  D 0  , J/  ) J PC =1 ++ preferred –Belle, Babar, CDFII, D0 X(3940) (→  D *  D,≠ D  D) J PC =0 -+ ? –Belle Y(3940) (→J/  ≠ D  D) J PC =J P+ –Belle, Babar Z(3930) (→D  D) J PC =2 ++ favoured –Belle Y(4260) (→J/  ) J PC =1 -- –Babar, CLEO, Belle Y(4350) (→  '     ) J PC =1 -- –Babar, Belle for most states J PC not well established nature unclear (exotic?) 9.4σ Phys. Rev. Lett. 91(2003)262001 152 Mill. BB

22 X(3872) predictions for PANDA Chen, Ma, PRD77(2008) 097501 X(3872) as  c1 (2P) X(3872) as loosely bound state of D mesons  pp→X(3872)→ J/   +  - Figures for  X =2.3 MeV

23 PANDA simulation: Y(4260) J/  →e + e - Y(4260)→ J/   +  - Y(4260)→J/   Full simulation for various X,Y masses  pp→Y(4260)→ J/   +  - →J/  

24 Glueballs Detailed predictions of mass spectrum from quenched LatticeQCD. –Width of ground state  100 MeV –Several states predicted below 5 GeV/c 2, some exotic –Exotic heavy glueballs: m(0 +- ) = 4140(50)(200) MeV m(2 +- ) = 4740(70)(230) MeV Some predicted decay modes: , , J/ , J/ ... The detection of non-exotic glueballs is not trivial, as these states mix with the nearby q  q states with the same quantum numbers, thus modifying the expected decay pattern. C. Morningstar and M. Peardon, Phys. Rev. D 60, 034509 (1999) LatticeQCD prediction of glueballs

25 Hybrids Distinction easier if exotic: 0 --, 0 +-, 1 -+,... Search below 2.2 GeV/c 2 : e.g.  1 (1600) (E852, VES, COMPASS) but: high density of mesons qqqq 1 - Gluon1 + Gluon 0 -+ 1 ++ 1 -- 0 +- 0 -+ 1 +- 1 -+ 2 +- 2 -+ exotic

26 Hybrids Distinction easier if exotic: 0 --, 0 +-, 1 -+,... Search below 2.2 GeV/c 2 : e.g.  1 (1600) (E852, VES, COMPASS) but: high density of mesons Charmonium region: less populated ground state predicted at ~4.3 GeV/c 2 Exotic: J PC =1 -+ Could be narrow: 5-50 MeV

27 Charmonium hybrid states charmonium final state open charm final state    c1  ++   1 --  h c0  0 +-   c0 0 -+  h c1 1 +-   c1 1 -+  h c2 2 +-   c2 2 -+

28 Charmonium hybrid states: simulation charmonium final state  c1 PANDA simulation Efficiency

29 By making an energy scan around threshold → counting signal events, determine the excitation function and extract the width and mass threshold D s *D s0 * The width of D s0 *(2317) can be measured in the reaction pp  D s D s0 *(2317) 29 Determination of mass and width of D sJ *(2xxx)

30 Production rates (1-2 fb -1 ) low multiplicity events  trigger on defined final states

31 Baryon spectroscopy

32 Electromagnetic processes Time like electromagnetic form factors –  pp  e + e - –wide kinematic range –separate measurement of G M and G E Hard exclusive processes Drell-Yan –  pp  e + e -,  pp   +  - –transverse quark distributions BG suppression for FF (PID and kinematic fit, full simulation)  +  - ≥ 10 6  +  - ≥ 10 8 less than 1% feed through

33 Summary Production of mesons, hybrids, glueballs in formation –all q  q quantum numbers –resonance scan technique precise determination of mass and width ~30 keV –2.25 GeV/c² < m < 5.47/c² GeV/c² Production of baryons, mesons, hybrids, glueballs with recoiling particles –all quantum numbers –antiproton momentum from 1.5 to 15 GeV/c Charmonium below and above D  D threshold Baryon spectroscopy Electromagnetic processes


Download ppt "PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert."

Similar presentations


Ads by Google