Presentation is loading. Please wait.

Presentation is loading. Please wait.

Korea Institute of Machinery & Materials (KIMM) Young-Hoon Song 2013. 08 Dry Reforming using with Plasma “Plasma Application for Energy & Environment”

Similar presentations


Presentation on theme: "Korea Institute of Machinery & Materials (KIMM) Young-Hoon Song 2013. 08 Dry Reforming using with Plasma “Plasma Application for Energy & Environment”"— Presentation transcript:

1 Korea Institute of Machinery & Materials (KIMM) Young-Hoon Song 2013. 08 Dry Reforming using with Plasma “Plasma Application for Energy & Environment”

2 Contents Review of Plasma Applications for Energy & Environment –Utilized technologies : spark ignition, combustion aid by plasma, CB & H dilute VOCs control, water treatment –developing technologies : fuel reforming (POX, steam reforming, dry reforming) plasma-catalyst process Dry reforming using with Plasma –Plasma generation techniques –Plasma alone, Plasma + catalysis technologies

3 Plasma chemistry vs Thermo chemistry Energy Reaction CH 4 + O 2 (reactants) CO 2 + H 2 O (products) ∆H∆H EaEa CH 4 + 2O 2 → CO 2 + 2H 2 O - ∆H k = A exp (- E a /RT) [cm 3 /sec] k Φ = 1.0 1.5 2.0 2.5

4 Catalytic reaction catalytic reaction pathway Energy Reaction CH 4 + O 2 (reactants) CO 2 + H 2 O (products) ∆H∆H EaEa CH 4 O2 O2 Pt CH 4 CH 4 + 2O 2 → CO 2 + 2H 2 O - ∆H k = A exp (- E a /RT) [cm 3 /sec] k

5 Plasma Chemistry CH 4 + e → CH 3, CH 2, CH, C, H O 2 + e → O K = f(E/n) CO 2, H 2 O, C, H 2 ….. k k Reaction Rates Reaction Products Carrier gases Thermo ChemistryPlasma Chemistry f (T)f (E/n) Few productsVarious products Adverse effectsFavorable effects

6 Dilute VOCs control with DBD

7 Analysis of treated gases Glass bead, 100 o C Al 2 O 3 bead, 100 o C Contaminated DBD electrode after toluene is treated

8 Utilized Technology : Ignition Ignition (low temp.) Combustion (high temp.) ∆G < 0

9 Utilized Technology : Plasma ignition for coal firing boiler

10 Utilized Technology : combustion aid by plasma (1) Plasma ON Plasma Of f  : 0.55 1.00 1.40 1.65 1.85 Methane premixed flame with different air-fuel ratio 1/4” 1/500”

11 Utilized Technology : combustion aid by plasma (2) Plasma burner for diesel after-treatment

12 POX for De-NOx application

13 SCR DPF Fuel reformer Diesel fuel + air CH 4 + ½ O 2 → H 2, CO, HC*H 2, CO, HC* + NO → N 2 + H 2 O +CO 2 Fuel Reformer

14 POX for De-NOx application

15 Utilized Technology : Water treatment with ozone

16 Utilized Technology : Dilute VOCs & Odor Control Takuma Co. Plasma Deodorization

17 Utilized Technology : Dilute VOCs & Odor Control O2O2 O 3 + catalyst → O C6H7C6H7 O 2 + e → O O + O 2 → O 3 C 6 H 7 + O → CO 2 + H 2 O ( ∼ ppm) ( ∼ %) Key mechanism long-lived carrier of atomic oxygen

18 Utilized Technology : CB & H process 캐나다 몬트리올 근교에 설치된 CB & H plant 전경 - 수소발생량 : 2,500 백만 ft 3 / 연간, carbon black 생산량 : 20,000 ton/ 연간 - 연료 : 천연가스 및 중유

19 Utilized Technology : Huels Process (CH 4 C 2 H 2 ) Report from Idaho Nat’l Lab (2007)

20 Requirements of practical applications (Energy & Environment) 1.∆G < 0 ex) ignition for combustion, plasma assisted combustion, POX 2. Appropriate reaction process ex) intermediate chemicals like O 3 that is a long lived O atom carrier reduce by-products w/ catalysts 3. Appropriate purpose ex) high temp. process : CB & H, C 2 H 2 (Huels process), waste melting on-board applications

21 Useful chemicals from methane CH 4 CO: H 2 (1:2) CO: H 2 (1:1) CO: H 2 (1:3) O2O2 H2OH2O CO 2 Syngas - H 2 - CO Ammonia Methanol Hydrocarbons Acetic acid Phosgene Oxo-alcohols Metal carbonyls Indirect processdirect process Heat + CO 2, H 2 O C2H6C2H4C2H6C2H4 Formaldehyde O2O2 O2O2 O2O2

22 Gibbs Free Energy ∆G (kJ/mol) 300 200 100 0 -100 -200 -300 200 400 600 800 1,000 1,200 Dry reforming Steam reforming Partial Oxidation WGS Temp. (K) WGS CO + H 2 O ⇔ CO 2 + H 2 Boudart Reaction 2CO ⇔ CO 2 + C

23 Boudart Reaction

24 Gas-To-Liquid Process Reforming Process (SMR) CH 4 H2OH2O Syngas CO, H 2 Fuel cracking Diesel Naphtha paraffin 800 – 900 o C150 – 300 o C F-T Process Liquid Hydrocarbons (2n+1) H 2 + n CO → C n H (2n+2) + n H 2 OCH 4 + H 2 O → CO + 3H 2 + 226 kJ/mol 15 – 30 atm Thermal energy

25 Gas-To-Liquid Process GTL Plant in Qatar

26 Dry reforming Dry reforming process CH 4 + CO 2 → 2CO + 2H 2 + 261 kJ/mol Steam reforming process CH 4 + H 2 O → CO + 3H 2 + 226 kJ/mol 800 - 900 o C, catalytic process 15 – 30 atm the most general means for mass production of H 2 Characteristics SMR 83 % 0.75 $/kg-H 2 POX 80 % 0.98 gasification 63 % 0.92 (coal) Electrolysis 55 % 1.95 (nuclear fission) Energy Efficiency & cost Int’l J. Hydrogen Energy 35 (2010) 850 o C, catalytic process 15 – 30 atm energy intensive process (20 % ↑) severe carbon formation at high P low H 2 /CO ratio Characteristics utilization of CO 2 landfill gas, biogas…

27 Methane reforming using with Plasma ABB DBD + catalyst KIST DBD + catalyst, gliding arc, pulse discharge TIT DBD + catalyst : CH 4 direct decomposition, SMR ’90 2000 2005 2010 Korea gas RF + catalyst, microwave (vacuum) : CH 4 decomposition, SMR U. Manchester DBD + catalyst : dry reforming KIMM Rotating arc: POX (De-NOx application)

28 Plasma dry reforming (ABB) 500 W, 0.5 L/min 60 kJ/L - dielectric heating loss - rot. & vib. excitation loss

29 Plasma dry reforming (ABB) PlasmaCatalysts Low temp. reaction Modified E field

30 Plasma steam methane reforming (TIT) k = A exp (- E a /RT)

31 CH 4 conversion – different plasma generation Wang et al. Int’l J. Hydrogen 35, (2010)

32 CH 4 conversion – different plasma generation CH 4 conv. [%] SED [KJ/L] Type Author Carrier gases major products 45 43 AC spark Y. Yang (1) CH 4 100 % C 2 H 2 25 43 DBD Y. Yang (1) CH 4 100 % C 2 H 6, C 3 H 8 12 6 gliding arc M. Mlotek et al. (2) CH 4 100 % C 2 H 2 22 60 DBD B. Eliasson (3) CH 4 100 % C 2 H 6, C 3 H 8 32 39 pulse corona A.M. Ghorbanzadeh (4) CH 4 100 % C 2 H 6 (50 nsec) 100 1 plasmatron Bromberg et al. (5) CH 4 /H 2 O, CH 4 /O 2 CO, H 2 75 5 microwave torch Wang et al. (6) CH 4 (5%) + N 2 (95%) H 2, C, C 2 H 2 (1)Plasma Chemistry Plasma Processing vol. 23, No. 2, 2003 (2)Applied Catalyst A General 366, 232-241, 2009 (3)Plasma Chemistry Plasma Processing vol. 25, No. 1, 2005 (4)Studies in Surface Science & Catalysis, vol 147, 577-582, 2004 (5)Int’l J. Hydrogen, 24 (1999) 1131-1137 (6)Int’l J. Hydrogen, 35 (2010) 135-140 Methane conversion high temp. plasma > spark > pulsed corona > DBD Practical meaning of 1 J/L (DBD, SV: 50,000 hr -1 ) 1 o C ↑

33 Methane activation using with plasma CH 4 CO: H 2 (1:2) CO: H 2 (1:1) CO: H 2 (1:3) O2O2 H2OH2O CO 2 Syngas - H 2 - CO Ammonia Methanol Hydrocarbons Acetic acid Phosgene Oxo-alcohols Metal carbonyls Indirect processdirect process Heat + CO 2, H 2 O C 2 H 6 C 2 H 4 ( < 300 o C) Formaldehyde (Room Temp.) O2O2 O2O2 O2O2

34 Methane activation using with plasma CH 4 (+ thermal energy) → CH 3 + H E1 = 4.3 eV CH 4 (+ Ni) → CH 3 * + H * E2 = 1.1 eV CH 4 + e → CH 3 + H + e E3 = 9 - 12 eV CH 4 + O → CH 3 + OH E4 = 0.37 eV CH 4 + OH → CH 3 + H 2 O E5 = 0.14 eV O 2 + e → O + O + e E6 = 6.0 eV

35 Methane activation using with plasma Nozaki et al non-selective characteristics of CH 4 activation with plasma

36 Summary Plasma dry reforming : - early stages - needs fundamental studies on CH 4 activation Plasma applications for Energy & Environment 1) ∆G < 0 2) appropriate reaction pathways (O 3, catalysts…) 3) appropriate purpose - high temp. applications - on-board applications


Download ppt "Korea Institute of Machinery & Materials (KIMM) Young-Hoon Song 2013. 08 Dry Reforming using with Plasma “Plasma Application for Energy & Environment”"

Similar presentations


Ads by Google