Presentation is loading. Please wait.

Presentation is loading. Please wait.

Let’s talk trash!.

Similar presentations


Presentation on theme: "Let’s talk trash!."— Presentation transcript:

1 Let’s talk trash!

2 Garbage Definition: Food waste Discarded or useless material
An unwanted or undesired material or substance Trash

3 Garbage If you're an average American, you are contributing nearly 4.5 pounds a day – about one ton a year – of garbage Nearly 30 percent of trash in landfills is paper; 18 percent is food scraps and 16 percent is plastics Garbage is sometimes a subjective concept, because items that some people discard may have value to others

4 Landfills Largest landfills can be seen from space!
Large cities need more than one landfill and some send their trash away Most communities do not want one near their homes (hmmmm.... wonder why....)‏

5 Can attract rodents and insects which can carry diseases
Landfills - Problems Can attract rodents and insects which can carry diseases Toxic chemicals can leak out of landfills and into the water tables Decomposing garbage can produce methane and CO2 Noise, dust, and odors from operations are ongoing problems Are expensive to operate

6 Great Pacific Garbage Patch
Is a mass of plastic and marine debris at least twice the size of Texas floating in the Pacific Ocean some 1,000 miles off the West Coast Composed of 3 million-tons of waste About 90 percent of floating marine litter is plastics like polyethylene, polypropylene, Styrofoam, nylon About four-fifths comes from land, swept by wind or washed into the sea. The rest of the junk comes from ships.

7 Great Pacific Garbage Patch

8 What can we do??? Try to buy items with the least amount of packaging possible – of every $10 we spend on stuff, $1 is for the packaging we throw away Recycle as much as possible Reuse items Become active in local issues

9 If all newspaper was recycled, we would save 250,000,000 trees a year
Why recycle? Recycling one aluminum can saves enough energy to run a tv for 3 hours (½ gallon of gas)‏ Steel and aluminum are the most recycled materials and recycled steel saves enough energy to heat and light 18,000,000 homes! If all newspaper was recycled, we would save 250,000,000 trees a year The amount of wood and paper Americans throw away each year is enough to heat 50,000,000 homes for 20 years

10 The average person uses about 680 pounds of paper each year
Why recycle? The average person uses about 680 pounds of paper each year Americans use 2,500,000 plastic bottles EACH HOUR – and most are thrown away Recycling plastic saves twice as much energy as burning it in an incinerator Modern glass containers take over 4000 years to decompose One quart of motor oil can contaminate up to 2,000,000 gallons of water

11 The Magnitude of Our Trash Problem
The U.S. is the #1 trash-producing country in the world at 1,679 pounds per person per year This means that 5% of the world's people generate 40% of the world's waste. How much trash do Americans throw out per day? 305,529,237 = US population About 4.4 pounds per person per day, would be 672,000 tons or 97,000 garbage trucks, Lined up end to end. 97,000 trucks is 570 miles, more than Fairbanks to Anchorage. IN ONE DAY .

12 Why are we so concerned about solid waste?
Because in the history of humanity, we have never experienced a production rate of trash as high or as complex as we have today.

13 Brief History of Trash 1913: Average 0.6 lbs/person/day without ash.
Garbage is refuse animal or vegetable matter from a kitchen, plus coal ash, bottles and rags. 1960: Average 2.6 lbs/person/day. Garbage now includes tin cans, aluminum cans, junk mail, but little plastic. 2012: Average 4.6 lbs/person/day Garbage includes plastic bottles, obsolete electronics, styrofoam cups, plastic food wrappers, used batteries, glossy magazines and computer paper.

14 Then and Now…. Compare the shopping experience between these two eras.
Number of goods Bulk vs. individual packing (note the coffee grinder and scale). Roll of wrapping paper vs. plastic bags Then compare the content of the garbage can between two eras: Percent of recyclable material Presence of hazardous materials The percent of packaging material The number of non-food items.

15 The E-waste crisis started about the time our present high-school students were born.
JUST SAY NO TO E-WASTE: BACKGROUND DOCUMENT ON HAZARDS AND WASTE FROM COMPUTERS Photo courtesy of Recycling Council of Ontario

16 Evolution of E-Waste E-Waste 1950 1960 1970 1980 1990 2000 2010
Lesson Plan: Oral history: Ask the oldest person you know what electrons they had in their house when they were a child. Then compare this number of items of electrons in your own house. 1950         1960          1970          1980           1990             

17 Just what are we throwing away?
MUNICIPAL SOLID WASTE in 2007 254.1 million tons If we recycled glass, paper, cardboard and metal food containers, as well as composted our food scraps what percentage of trash would be eliminated from the waste stream?

18 What do we do with all this waste we are producing?
Bury it: which takes space, special construction of lined landfills, off gassing, leaching remediation, and monitoring the landfill for 30 years after it is closed Burn it: Incinerators or Waste to Energy Plants reduce the volume of garbage by ~60% but they require special air quality equipment, fly ash must be treated as a hazardous material, and residue ash still has to go to the landfill. This method is more costly than landfills, but suitable for large populations with land storages. Mine it: Mining recyclable material out of our waste stream reduces the volume of garbage going to the land fill, but cost flexes with the market prices. Where is “away” when we saying we are ” throwing away” trash?

19 Landfills Approximately 65% of U.S. waste ends up in landfills
Ecosystem of the landfill: Garbage is covered with gravel or other material each day. Little air is available so anaerobic decomposition occurs creation methane gas. Rain and melt water leach through the layers of garbage and is captured in the landfill liner. This leachate is either poured back over the landfill or treated before it is released. Ecosystem of the landfill. Garbage is covered with gravel or other material each day. Little air is available so anaerobic decomposition occurs creation methane gas. Rain and melt water leach through the layers of garbage and is captured in the landfill liner. This leachate is either poured back over the landfill or treated before it is released.

20 Burning Garbage The US burns 17% of its garbage in incinerators. Incinerators cost more than landfills. However in density-populated areas that lack land for landfills, incinerators are relied on to handle most of their garbage.   Burning can reduce the volume of garbage by 60-90%, but it produces ash and creates harmful gases and particles that must be filtered out of the air.   Many experts believe incineration can work safely, but it requires adherence to strict standards and regulations. A 1994 Supreme Court decision requires operators to test their ash and, if it is toxic, to handle it as a hazardous waste.   Citizens are often reluctant to accept an incinerator in their own community because of concerns about safety, odors, and the conflict between recycling programs and incineration.   Economic benefit of the waste to energy plants depends on the price of competitive energy sources.

21 A Duel Problem: The issue is not just the volume of trash we are producing, but also the hazardous composition our trash.

22 EXAMPLE: These elements in electronic devices can become hazards if set on fire, placed in acid baths, inhaled as dust, or dumped in waterways. • Circuit boards contain cadmium, lead or beryllium • Cathode ray tubes (CRTs) are coated with barium and phosphor, in addition to containing 2-6 lbs of lead. • Batteries are loaded with lead, mercury, and/or cadmium. • Components, switches, or lights contain mercury-, beryllium- and Polychlorinated Biphenyl-containing materials.

23 Mercury Used in: electrical switches, batteries, barometers, thermometers, fluorescent and neon lights Hg Valuable Properties: Mercury conducts electricity and expands at a constant rate in response to changes in pressure or temperature. In its vapor state, mercury can combine with other gases to form more complex molecules that emit light when charged with electricity. JUST SAY NO TO E-WASTE: BACKGROUND DOCUMENT ON HAZARDS AND WASTE FROM COMPUTERS Mercury (14) When inorganic mercury spreads out in the water, it is transformed to methylated mercury in the bottom sediments. Methylated mercury easily accumulates in living organisms and concentrates through the food chain particularly via fish. Methylated mercury causes chronic damage to the brain. It is estimated that 22 % of the yearly world consumption of mercury is used in electrical and electronic equipment. It is basically used in thermostats, (position) sensors, relays and switches (e.g. on printed circuit boards and in measuring equipment) and discharge lamps. Furthermore, it is used in medical equipment, data transmission, telecommunications, and mobile phones. Mercury is also used in batteries, switches/housing, and printed wiring boards. Although this amount is small for any single component, 315 million obsolete computers by the year 2004 represent more than 400,000 pounds of mercury in total. Exporting Harm - The High-Tech Trashing of Asia Prepared by The Basel Action Network (BAN) and Silicon Valley Toxics Coalition (SVT SVTC) February 25, 2002 Jim Puckett, BAN, et.al. Mercury -- Mercury can cause damage to various organs including the brain and kidneys, as well as the fetus. Most importantly, the developing fetus is highly susceptible through maternal exposure to mercury. When inorganic mercury spreads out in the water, it is transformed to methylated mercury in the bottom sediments. Methylated mercury is used in electrical and electronic equipment. It is used in thermostats, sensors, relays, switches (e.g. on printed circuit boards and in measuring equipment), medical equipment, lamps, mobile phones and in batteries. Mercury, used in flat panel displays, will likely increase as their use replaces cathode ray tubes.28 Mercury has several unique and useful properties that have led to widespread use. It is the only metal that, in its pure form, is a liquid at room temperature. Liquid mercury is volatile, meaning that it easily evaporates to form a poisonous vapor. Mercury conducts electricity and expands at a constant rate in response to changes in pressure or temperature. Electrical switches, barometers and thermometers take advantage of these properties. In its vapor state, mercury can combine with other gases to form more complex molecules that emit light when charged with electricity, hence the use of mercury in fluorescent and neon lights. Mercury combines easily with most metals to form malleable alloys, such as dental filling amalgam. This particular property of attaching to other metals, together with the ease of separating and distilling the amalgams, led to mercury's widespread use in gold mining. Mercury continues to be widely used in household products, as well as commercial, medical and industrial applications “Mad as a hatter” Hazardous Properties: Exposure to high levels of metallic, inorganic, or organic mercury can permanently damage the brain, kidneys, and developing fetus. Effects on brain functioning may result in irritability, shyness, tremors, changes in vision or hearing, and memory problems.

24 Lead shot for waterfowl
Outlawed Lead Lead gasoline Lead paint Lead shot for waterfowl Pb Used in: lead-acid batteries, solder, x-ray protection, paint Valuable Properties: Lead is a very corrosion-resistant, dense, ductile, and malleable metal. Hazardous Properties: Lead can cause damage to the central and peripheral nervous systems, blood system and kidneys. Effects on the endocrine system have also been observed and its serious negative effects on children’s brain development has been well documented. The toxicity of lead comes from its ability to mimic other biologically important metals, most notably calcium, iron and zinc which act as cofactors in many enzymatic reactions and interfering with the enzyme's ability to catalyze its normal reaction(s). Exporting Harm - The High-Tech Trashing of Asia Prepared by The Basel Action Network (BAN) and Silicon Valley Toxics Coalition (SVT SVTC) February 25, 2002 Jim Puckett, BAN, et.al. Lead -- The negative effects of lead are well established and recognized. It was first banned from gasoline in the 1970s. Lead causes damage to the central and peripheral nervous systems, blood systems, kidney and reproductive system in humans.25 Effects on the endocrine system have been observed and its serious negative effects on children’s brain development are well documented. Lead accumulates in the environment and has high acute and chronic effects on plants, animals and micro-organisms.26 The main applications of lead in computers are: glass panels and gasket (frit) in computer monitors (3-8 pounds per monitor), and solder in printed circuit boards and other components. JUST SAY NO TO E-WASTE: BACKGROUND DOCUMENT ON HAZARDS AND WASTE FROM COMPUTERS Lead (9) Lead can cause damage to the central and peripheral nervous systems, blood system and kidneys in humans. Effects on the endocrine system have also been observed and its serious negative effects on children’s brain development has been well documented. Lead accumulates in the environment and has high acute and chronic toxic effects on plants, animals and microorganisms.(10) Consumer electronics constitute 40% of lead found in landfills. The main concern in regard to the presence of lead in landfills is the potential for the lead to leach and contaminate drinking water supplies. The main applications of lead in computers are: (1) soldering of printed circuit boards and other electronic components (2) glass panels in computer monitors (cathode ray tubes) Between 1997 and 2004, over 315 million computers will become obsolete is the USA. This adds up to about 1.2 billion pounds of lead!

25 PVC Used in: cabling, insulation of wires, and computer housings, although many computer moldings are now made with the somewhat more benign ABS plastics. Higher levels of dioxin exposure have been linked to birth defects, child growth retardation, cancer, and reduced levels of male reproductive hormones. Dioxins are ubiquitous in the environment due to their multiple sources, environmental persistence, and ability to travel long distances. Dioxins not easily metabolized or excreted by wildlife and people, accumulate in body fat, and concentrate in the food web. Valuable Properties: PVC is strong, rigid, light weight, waterproof and flame-resistant. PVC also can be made into a soft and flexible plastic by mixing it with plasticizers. Hazardous Properties: The PVC itself isn't toxic or carcinogenic, but the monomer used to make PVC, vinyl chloride, is carcinogenic and can be harmful to people who work in the factories where PVC is made. Dioxin (polychlorinated dibenzo-p-dioxins) is produced as a byproduct of vinyl chloride manufacture and from incineration of waste PVC in domestic garbage. Also the plasticizers that make PVC soft and flexible can be toxic and carcinogenic.

26 Cr Hexavalent chromium 6+
Because chromium can go into solution and move through soil, chromium pools and blooms (the crystallized chromium left on the surface when the water evaporates) may occur some distance from the original site of contamination. 6+ Cr Valuable Properties: It is used as a corrosion inhibitor and in hardening and corrosion protection in metal housing. Hazardous Properties: While other forms of chromium can be trace nutrients for animals and humans, hexavalent chromium is highly toxics even at low concentrations, and in some case carcinogenic, site specific cancer-lung and sinuses. Also hexavalent chromium is far more reactive and soluble in water than other forms of chromium, making it more mobile in the environment.

27 Beryllium 4 9.0 Be Used in: semi-conductor chips, ignition modules, transistors, electrical insulator Valuable Properties: Beryllium is extremely lightweight, hard, a good electrical and thermal conductor, and non-magnetic. Due to its electrical conductivity, it is used in low-current contacts for batteries and electrical connectors Hazardous Properties: Handling beryllium in its solid form, such as a finished computer part that contains beryllium, is not known to cause illness. However, some people who inhale beryllium dust or fumes will develop beryllium sensitization or chronic beryllium disease (CBD). Beryllium-copper alloys are used in a wide variety of applications because of their electrical and thermal conductivity, high strength and hardness, good corrosion and fatigue resistance, and nonmagnetic properties.  Beryllium oxide is an excellent heat conductor, with high strength and hardness, and acts as an in some applications.

28 Poisons in our trash Have you seen this symbol? The crossed out wheeled bin symbol informs you that the product should not be disposed of along with municipal waste because it contain hazardous substances that could impact health and the environment, if not properly disposed. The “Take-back” Discussion: So who’s responsibility is it to make sure these hazardous substance do not enter our municipal waste system?? Is a labeling enough? Should it be up to the individual to sort this out? Should the manufacture “take back” the item to insure proper disposal? Who pays for treating hazardous waste? The public, the government, retailer or the manufactures? Which method would be the best incentative to reduce hazardous materials in the design and manufacture item of items. This new symbol is found on head lamps, bike lights, and thermostats.

29 The Link between Solid Waste & Climate Change
Methane (CH4), is a greenhouse gas produced in landfills.   Global Warming Potential of methane is 25 times greater than carbon dioxide.   Landfills are second only to livestock industries as the greatest anthropogenic source of methane.   The manufacture, distribution, and use of products—as well as management of the resulting waste—all result in emissions of greenhouse gases that affect the earth’s climate. Reduction and Recycling reduce production of green house gases.

30 ECONOMICS OF SOLID WASTE
Whether you use a landfill, incinerator or combine it with a recycling program, managing solid waste is still costly. Waste-to-energy programs are only cost effective when fuel price are high and programs serve a large population. Pay as you throw programs are the most effective at deterring waste production. What do you pay to throw garbage away? Economically, the best choice is to reduce the amount of material we throw away.

31 How can we reduce our waste production?

32 Tools to reduce waste: The Four Rs:
Rethink Reduce Reuse Recycle

33 RETHINK We know that most items we purchase will be thrown away eventually, so why not design for the “end of life” of the product? Engineers and product designers need to address: Packaging: materials comprise 65% of our waste. Toxic substances: substitute with less toxic or benign materials (i.e. lead-free solder) that can be harmlessly disposed of or recycled.

34 Paying for a Bad Design “Electronics were designed to be disposed of rather than recycled, therefore it is difficult and costly to separate the high-value recyclable materials and the toxic components from discarded electronics." JUST SAY NO TO E-WASTE: BACKGROUND DOCUMENT ON HAZARDS AND WASTE FROM COMPUTERS Photo courtesy of Recycling Council of Ontario

35 REDUCE As consumers, we make choices about the products we purchase and how much use we get out of them. Bottled water vs personal water bottles Single use shopping bags vs. reusable bags Coffee and soda “go-cups” vs. reusable insulated cups Food packaged in individual servings vs. buying in bulk (i.e. oatmeal, pasta) News papers vs. On-line news Paper bills and newsletters vs. or on-line

36 REUSE We can choose when to replace our belongings.
Repair vs. replace: is it broken, or just “old”? Using “hand me downs” and shopping at thrift stores instead of always buying new clothing Taking advantage of libraries and rentals instead of buying most books and movies. Taking proper care of the items we do purchase, to maximize their lifetime. Adapting items for another use instead of discarding (e.g. dryer lint + wax = fire starters)

37 RECYCLE This term is often misused, or used too broadly. Proper definition of recycling is "the separation and collection of materials for processing and manufacturing into new products, and use of these new products to complete the cycle". Should be the final step, after rethinking product design and reducing waste production through wise purchasing and reuse. We are “closing the cycle” when we purchase items made up recycled material. “Downcycling”occurs when the new product is of mixed materials and can not be recycle again (i.e. carpeting and boards made of a mixture plastic bottles and sawdust).

38 The 4 Rs Illustrated: Product Lifecycle
Rethink Reduce Reduce The lifecycle of a product can be viewed as a series of phases that proceed from extracting raw materials, through processing of materials to assembly, use, and end-of-life. There are also potential phases for recycling, remanufacturing, and reuse. The U.S. Office of Technology Assessment created this diagram of a product lifecycle. Consumers and producers act at all stages of the life cycle to reduce consumption, waste, and environmental impacts. Material Extraction Material Processing Manufacturing Use Waste Management Reuse Reuse Repair Recycle Recycle Remanufacture Suggested by OTA, "Green Products by Design: Choices for a Cleaner Environment," 1992.

39 What can you do? Learn what you can keep out of the garbage.
Recycle naturally, that is COMPOST in your own back yard   Consume wisely. Plus you can study to become a green engineer or designer Every person leaves a footprint on this earth, by simply living here. 1606 pounds of trash per person per year x 78 years = 125,268 pounds of trash YOU will generate! Volume of the trash use generate is 22,545 cubic feet

40

41 There is no “away” There is no way to get rid of all our garbage. The best solution is to make less, then find the most appropriate way -- reuse, recycle, burn, or landfill -- to manage what's left. Where does your trash go? Find out, if you don't know. What would your family do if your trash wasn't picked up every week?

42 You can make a difference.
You have purchasing power: Will you select more “greenly” designed items? Will you buy less and reuse more? You can choose a greener lifestyle: Will you take advantage of existing recycling programs in your community? Will you pass along your usable goods to thrift stores, online pages like Craig’s list?


Download ppt "Let’s talk trash!."

Similar presentations


Ads by Google