Download presentation
Published byLenard Watson Modified over 9 years ago
1
Advanced Oxidation Processes for water treatment
Santi Esplugas Chemical Engineering Department. University of Barcelona SPAIN Tarragona, 20 December 2011
2
Structure of the Presentation
Introduction Advanced Oxidation Processes - Ozone based - Fenton Photochemical Oxidation Processes - UV Photolysis - H2O2/UV - Ozone/UV - TiO2 Photocatalysis - PhotoFenton Conclussions and Recommendations Photocatalysis
3
REMOVAL OF POLLUTANTS FROM WATER
*PHYSICAL METHODS (non destructive ): Mechanical separation Sedimentation Filtration Adsorption and ion exchange Reverse osmosis cost *CHEMICAL METHODS (destructive ): Precipitation Ion exchange Chemical Oxidation (and reduction): biochemical oxidation chlorine hydrogen peroxide ozone hydroxyl radical (OH •) AOPs
4
Classical Oxidants Oxygen: moderate oxidant with small solubility in water that needs high investments in installations, but its low operation costs may do the process attractive. Chlorine: strong oxidant and cheap. Possibility of producing chlorinated organic compounds, more toxic than the initial ones. It has good enough solubility in water. Permanganate: strong enough oxidant, but expensive. It is selective, no easy to handle and not desirable manganese is added to the treated water. Hydrogen peroxide: multipurpose oxidant soluble in water that could be applied directly or with a catalyst (without it some organic compounds are not attacked). Ozone: strong oxidant that as oxygen and hydrogen peroxide does not introduce new ions to the medium. It is more soluble in water than oxygen. Its difficult handling. Necessary to generate it on-site. Process, normally, is controlled by mass transfer.
5
OH• Characteristics (redoxpotential)
* very powerful oxidation compound (F2 > OH• > O3 > ) * oxidation power related to chlorine (Eº = 1.36 V) Rate constants of °OH radical with organics: x 107 mol-1 L s-1
6
OH• Characteristics (no especific oxidant)
Compounds that can be oxididez by OH radicals Acids Formic, gluconic, lactic, malic, propionic, tartaric Alcohols Benzyl, tert-butyl, ethanol, ethylene glycol, glycerol, isopropanol, methanol, propenediol Aldehydes Acetaldehyde, benzaldehyde, formaldehyde, glyoxal, isobutyraldehyde, trichloroacetaldehyde Aromatics Benzene, chlorobenzene, chlorophenol, creosote, dichlorophenol, hydroquinone, p-nitrophenol, phenol, toluene, trichlorophenol, xylene, trinitrotoluene Amines Aniline, cyclic amines, diethylamine, dimethylformamide, EDTA, propanediamine, n-propylamine Dyes Anthraquinone, diazo, monoazo Ethers tetrahydrofuran Ketones Dihydroxyacetone, methyl ethyl ketone
7
OH• Characteristics (no especific oxidant)
Scavenger effect (at high concentration) Inorganic ions: Sulfate, chloride, carbonate,.. Alcohols: methanol, terbutanol,.. Hydrogen Peroxyde 7
8
Biodegradability enhancement by AOPs
dyes WO pulp&paper Fenton textil O3 surfactants
9
AOP classics homogeneous heterogeneous radiation UV-VIS Photolysis
O3/UV TiO2/UV Fe+3/UV/H2O2 O3/H2O2 O3 sonolysis electrochem Se divide principalmente en dos partes, una primera parte donde se estudiaran los procesos llamados homogéneos, y son aquellos procesos donde todos los reactivos son líquidos o en disolución. Y una segunda parte dedicada a los procesos heterogéneos, se trata de reacciones gas-liquido, donde el reactante gaseoso es el ozono. Los tratamientos estudiados en la primera parte son la fotolisis mediante radiación ultravioleta, y el proceso que combina radiación ultravioleta y un oxidante ( en este caso se utilizaron peróxido de hidrogeno y sales de hierro III). En cuanto a la segunda parte se estudiaron los procesos de ozonización. Ozonización combinada con radiación UV, y ozonización combinada con peróxido de hidrogeno, también se realizaron experimentos combinando ozono, radiación y peróxido a la vez. Todos estos tratamientos, están basados principalmente en el poder oxidativo del radical ·OH, considerado uno de los oxidantes más potentes. Radical ·OH (light conditions) atmospheric pressure and room temperature Glaze 1987.
10
AOP modern (hot AOP) ELECTRON BEAM CAVITATION WET OXIDATION
SUPERCRITICAL WATER OXIDATION Se divide principalmente en dos partes, una primera parte donde se estudiaran los procesos llamados homogéneos, y son aquellos procesos donde todos los reactivos son líquidos o en disolución. Y una segunda parte dedicada a los procesos heterogéneos, se trata de reacciones gas-liquido, donde el reactante gaseoso es el ozono. Los tratamientos estudiados en la primera parte son la fotolisis mediante radiación ultravioleta, y el proceso que combina radiación ultravioleta y un oxidante ( en este caso se utilizaron peróxido de hidrogeno y sales de hierro III). En cuanto a la segunda parte se estudiaron los procesos de ozonización. Ozonización combinada con radiación UV, y ozonización combinada con peróxido de hidrogeno, también se realizaron experimentos combinando ozono, radiación y peróxido a la vez. Todos estos tratamientos, están basados principalmente en el poder oxidativo del radical ·OH, considerado uno de los oxidantes más potentes.
11
WET OXIDATION * Wet oxidation is a flameless radical oxidation process brought about when an organic and/or oxidizable inorganic-containing liquid is mixed thoroughly with a gaseous source of oxygen at temperatures of 150 to 325 ºC and gauges pressures of 0.2 to 2.06 Mpa (2 – 20 atm). - High Pressure High operating Need to optimize the and Temperature costs process * WO is a process specially suited to treat effluents that are too concentrated to be treated biologically and too diluted to be incinerated. The common COD level of the emissary effluent to be treated by WAO is between 20 g/L and 200 g/L. * Advantage: During the process neither NOx, SO2, HCl, dioxides nor other harmful products are generated.
12
Lab WO installation thermostatic bath stirrer reactor controller
13
Lab WO installation PO2 = 5 - 20 bar stirrer = 700 rpm V = 0.3 L
T = C 1) power supply, 2) controller, 3) oxygen cylinder, 4) heater, 5) stirrer, 6) reactor, 7) sample extraction, 8) gas draining
14
WO reactor Drop band with screw Split ring pair with screws Bomb head
Dip tube Cooling loop Stirrer Bomb cylinder
15
Suitability of water treatment according to COD
10 100 1000 Classical AOP Wet Oxidation Incineration COD (g.L-1) 20 200 autothermic 2 Andreozzi, R., Caprio, V., Marotta, R. (1999) Advanced Oxidation Processes (AOP) for water purification and recovery”, Catalysis Today 53 (1) 51-59
16
Suitability of water treatment according to TOC
TOC (mg.L-1) Flow rate (m3.h-1) Hancock,F.E. (1999) “Catalytic strategies for industrial water reuse” Cat. Today 53, 3-9
17
COD removal - AOPs Applications
AOPs application regions with regards to economic consideration From these examples of applications and considering all others we know today from different sources we can draw out a figure of the use of AOP for COD removal in waste water treatment. With regards to economic consideration it appears than ranging few 10 mg/L to few 100mg/L the UV based systems and O3/H2O2 combination are set out. The Fenton process and pressurised Fenton processes are much more dedicated to COD ranging 800mg/l to 30000mg/L while the WAO process since to get interest for COD of 30000mg/L up to mg/L. Above this value incineration should be the ultimate solution. It is clear than higher is the COD and lower is the quantity of flow which is really economically acceptable. To complete this purpose about waste water treatment we can mention the case of concentrate coming from gas treatment for hydrophilic COV with a chemical washing process. In such case in which we get dirty water which contains few g/l of COV (case of formaldehyde and phenols) and with a small volume (few m3/d) AOPs can be used to recover the washing water with the same figure. Suty,H., Coste, M. “The AOPs tools in the treatment of waste water effluents” 3rd European Meeting on Solar Chemistry and Photocatalysis :Environmental Applications Barcelona, 30 June and 1, 2 July 2004
18
Ozone O3 1785: M. van Marun . Oxygen with electric discharges gives a peculiar odor (irritant). 1840: Schönbein discovered Ozone, a different substance based on Oxygen (from greek ozein, smell) 1856: Thomas Andrews demonstrate that Ozone is only formed by Oxygen 1863: Soret found the relation Oxygen-Ozone (three volumes of oxygen produces two volumes of ozone) 3 O2 ↔ 2 O3 Thermodinamically unstable have to be produced “in situ” ozone% explosion limit = 30%
19
Ozone generation UV (185 nm) irradiation (air oxygen) Electric discharge Electrolitic only 5-10% of electric energy leads to ozone production
20
Ozone reactivity O3 ───® 3/2 O2 DH°= - 34.61 kcal/mol
O3 + 2 H+ + 2 e- ───® O2 + H2O E° = 2.07 V organics :direct and indirect attack Moxidized O3 HO· M Initiators Promoters M’oxidized Inhibition metallic ions oxidation
21
Ozone mass transfer Generation (air, oxygen) Mass transfer
water treatment with ozone
22
Ozone /Hydrogen Peroxyde
Ozone via hydroxyl radical Ozone at high pH Ozone /UV Ozone /Hydrogen Peroxyde Catalytic Ozonation C, TiO2, oxides and salts of Fe, Mn, Ce, Cu, Co..
23
Ozone Material & operating conditions
24
Ozone Material & operating conditions
Ozonation Set-up
25
Ozone/Hydrogen Peroxyde
(Peroxone)
26
Fenton = Fe+2- H2O2 Fe 2 + + H 2 O 2 → Fe 3 + + OH· + OH-
* Developed 1894 by Henry John Horstman Fenton as an analytical reagent Fenton HJH (1894). "Oxidation of tartaric acid in Presence of iron" J. Chem Soc, Trans. 65 (65): doi : /ct * Suggested by Haber and Weiss in the 1932 Haber, F. and Weiss, J. (1932). "Über die des Hydroperoxydes KATALYSE" Naturwissenschaften . doi : /BF Fe H 2 O 2 → Fe OH· + OH- Fe H 2 O 2 → Fe OOH· + H+
27
H2O2 Hydrogen Peroxide Discovered by Thenard 1818
by reacting barium peroxide with nitric acid Hydrogen peroxide is a clear liquid, slightly more viscous than water, colorless. pure hydrogen peroxide have a pH of 6.2, pH can be as low as 4.5 when diluted at approximately 60%.
28
mechanism through de Fe(IV) ??
Fenton Fenton = Fe+2- H2O2 T mV pH H 2 O OH Fe 3+ 2+ mechanism through de Fe(IV) ?? 28
29
Fenton mechanism 29
30
Fenton like Fe+2- H2O2 at not acidic pH
Me+2- H2O2 at basic or neutral pH Heterogeneous Fenton by using solids containing metalic oxids- H2O2 ……. 30
31
Fenton Advantages Disadvantages Operation pH 2-4 (optimal =3)
Very cheap Simplicity (easy maintenance). Robustness. Flexibility Disadvantages Operation pH 2-4 (optimal =3) Generation of sludge through the removal of iron ions. Exploration of Fenton at different pH (neutral and basic) under research (iron complexes, Cu,..) Possibility of supporting Fe ions on a solid under research 31
32
Photochemical Oxidation Processes
PHOTOCHEMICAL PROCESSES WAVELENGTH UV (photolysis) < 190 nm H2O2/UV < 300 nm O3/UV < 320 nm O3/H2O2/UV TiO2/UV (photocatalysis) < 400 nm Fe+2/H2O2/UV (photoFenton) < 550 nm Fe+2/e-/UV (photoelectroFenton)
33
PHOTOCHEMISTRY 33
34
Energy of photon with wavelength E = h.c/
PHOTOCHEMISTRY Energy of photon with wavelength E = h.c/ h (Planck) = J.s c (light) = m/s = m Einstein = 1 mol of photons Quantum yield (stoichiometric coefficient) = mol reacted/mol of photons absorbed 34
35
PHOTOCHEMISTRY UV radiation ~ 100 - 400 nm visible ~ 400 - 700 nm
near infrared ~ nm far infrared nm UVA – 400 nm UVB – 320 nm UBC – 280 nm UV-VIS ENERGY ENERGY 200 nm kcal.mol kJ.mol-1 700 nm kcal.mol kJ.mol-1 wavelength, nm UV VISIBLE 35
36
SOLAR PHOTOCHEMISTRY 4 - 7% UV radiation ( <400 nm) 36
37
PHOTOREACTOR DESIGN mass balance momentum balance energy balance
global j componet momentum balance energy balance
38
PHOTOREACTOR DESIGN radiation balance for every wavelength
UR = radiation internal energy , Einstein/m3 qR = radiant energy flux density vector , Einstein/(m2.s) E = radiant energy emission , Einstein/(m3.s) A = radiant energy absorption , Einstein/(m3.s) c = light speed, m/s Iw* = radiation intensity (escalar and by solid angle) in the vectorial direction w, Einstein/(m2.s.srad)
39
PHOTOREACTOR DESIGN for not emitting media
Iw* = radiation intensity (escalar and by solid angle) in the vectorial direction w, Einstein/(m2.s.srad) I = radiation intensity (escalar), Einstein/(m2.s) x = position according the bundle moviment, m s = lineal cordinate in w direction w (optical way),m = adsorption radiation coefficient, m-1 = scattering coefficient, m-1 P(w*,w) = phase function of dispersion w* w. Indicates the probability of a bundle in the direction w* takes the direction w after dispersion. = solid angle, srad
40
PHOTOREACTOR DESIGN photon balance x
q =photon flow density vector, Einstein/(m2.s) = absorbance, cm-1 x = position, cm 0,01 0,9900 0,0100 0,1 0,9048 0,0952 1 0,3679 0,6321 3 0,0498 0,9502 9 0,0001 0,9999 40
41
Tubular Photoreactors
42
Multitubular Photoreactors
43
Multitubular Photoreactors
44
Helioman-PSA – Almeria
Solar Photoreactors Helioman-PSA – Almeria
45
Solar Photoreactors Parabolic CPC-PSA – Almeria
46
Experimental Devices c0: 200 ppm cp: 0 - 1 g/L pH: free T: 30 ºC
VR: 1,26 - 0,078 L L = cm d = 4 - 1,95 cm VT: 6 - 1,5 L Smirror: cm2 41º inclination (Barcelona Latitude) and faced South.
47
Experimental Devices 6 tubes Vtubo: 0,135 L Ltubo = 60 cm
dtubo = 1,75 cm VR = 0,808 5 codos VC = 0,034L VTC = 0,170 L VTR = 0,978 L c0: 50 ppm cp: 0,4 g/L pH: free VT: 10 L T: 30 ºC q: 1,95 L/min
48
WATER PHOTOLYSIS O-H bond strength in H2O: ca. 497 kJ mol -1
(corresponding wavelength = 240 nm) 240 nm H2O + hν → °OH + H° Φ = 0.42 at 172 nm H° + O2 → HO2° Termination reactions: 2 °OH → H2O2 2 H° → H2 HO2° + °OH → H2O + O2 2 HO2° → H2O2 + O2 48
49
WATER PHOTOLYSIS VCV lamps ( = 180 nm) Excimer lamps
Advantage: no gaseous, liquid or solid additive Disadvantage: very limited penetration depth of the photons high cost of 180 nm radiation (Xe lamp) ozone production Potential application: microelectronics, gas treatment 49
50
UV/ H2O2 (WATER PHOTOLYSIS)
380 kJ/mol or 90 kcal/mol 210 kJ/mol or 50 kcal/mol
51
H2O2 PHOTOLYSIS H2O2 + hν → 2 °OH pKa = 11.6 HO2- + hν → °OH + O°-
O°- + H2O → °OH + OH- ε254: 18.6 for H2O2 ; 240 L mol-1 cm-1 for HO2- 51
52
UV/ H2O2 tubular photoreactor
UVC-lamps photoreactor punp rotameter tubular photoreactor 4 low-pressure 15 W mercury lamps nm Volume 1.5 L Went, 13.9 Einstein.s-1
53
UV/ H2O2
54
H2O2 PHOTOLYSIS Drawbacks Advantages handling/safety precautions
no residues H2O2 is miscible with H2O H2O2 is readily available, transportable, storable handling/safety precautions very weak absorption except at high pH (several tens of kW-lamps) ; inner filter effect by organics needs UVC (254 nm). Gemicidal °OH scavenging by H2O2 (°OH + H2O2 → HO2° + H2O) Drawbacks Advantages 54
55
OZONE/UV Absorbs < 320 nm (UVB-UVC) ε254: 18.6 for O3 L mol-1 cm-1
Relative absorbance wavelength, nm 320 nm ε254: 18.6 for O3 L mol-1 cm-1 55
56
OZONE/UV mechanism hydroxyl radical hydroperoxyl radical scavenger 56
57
Ozone/UV
58
Ozone/Hydrogen Peroxyde/UV
59
OZONE/UV Advantages Disadvantages no residues
easy O3 dosification UV absorption higher than that of H2O2 (0.1 kW-lamps) Disadvantages need to produce O3 (but bactericidal use of O3) necessity of destroying residual gaseous O3 efficiency limited by O3 hydrosolublity, gas-liquid transfer and scavenging of °OH (°OH + O3 → HO2° + O2) Problems Unwanted stripping of VOCs Br- + 3 O3 → BrO O2 (overall reaction) 59
60
Photocatalysis Heterogeneous photocatalysis
Semiconductor based catalyst: * TiO2 , ZnO, ... * CdS Homogeneous photocatalysis Photosensitizers (ruthenium(II) poly(pyridyl),...) PhotoFenton Fe+3/UV/H2O2 60
61
Zeolite with photosensitizers
Fe2+ N [Fe(bpy)3] (1 nm) 2,2‘ - bipiridin (bpy) Zeolite 61
62
Zeolite with photosensitizers
Absorbance UV Visible 62
63
TiO2/UV good UV absorption low quantum yield ( < 0.03) 63
64
TiO2/UV Advantages Disadvantages
No consumable additive Use of Solar UV Simplicity (easy maintenance). Robustness. Flexibility Much lower sensitivity to pH than UV-AOPs based on H2O2 , O3 Reduction of some pollutants: Mn+, CCl4 Disadvantages Separation of the catalyst from the solution UV irradiation is poorly utilized by TiO2 despite high absorption Poisoning of catalyst by organic matter. Low quantum yield 64
65
PhotoFenton Fe+3/UV/H2O2
Fe2(SO4)3 UV lamps (360 nm) Fe(III) in the presence of UV : Fe3+(aq) + H2O + hn OH· + Fe2+ +H+ quantum yield for the formation of Fe(II) at 313 nm 0.017 at 360 nm Faust, B. C.; Hoigne, J., Atmos. Environ. 24A (1990) pp Magnetic Stirrer 65
66
PhotoFenton Fenton Fe(III) in the presence of UV :
Fe3+(aq) + H2O + hn OH· + Fe2+ +H+ Fenton 66
67
°OH radicals are not the only active species
PhotoFenton Additional reactions in Photo-Fenton Fe3+ + H2O2 → H+ + Fe(HO2)2+ Fe(HO2)2+ + hν → Fe(HO2)2+* Fe(HO2)2+* → FeIII-O° ↔ FeIV=O + °OH Fe(HO2)2+* → FeII + HO2° °OH radicals are not the only active species UV-visible photodegradable compounds 67
68
Solar PhotoFenton parabolic CPC PSA – Almeria 68
69
PhotoFenton Advantages Disadvantages Operation pH 2-4 (optimal =3)
Very cheap Simplicity (easy maintenance). Robustness. Flexibility Increase mineralization (TOC reduction) Use of visible radiation Disadvantages Operation pH 2-4 (optimal =3) Generation of sludge through the removal of iron ions. Cost of UV-visible lamps Waters with suitable UV light transmission Fouling of the surface of UV tubes 69
70
Strategy to combine AOPs with Biological treatments
* Decrease the treatment cost * Increase biodegradability * Eliminate toxicity CHEM BIOL CHEM BIOL DOMESTIC WASTEWATER Biodegradability (BODn/COD) = Metcalf and Eddy (1985)
71
Strategy to combine AOPs with Biological treatments Wastewater
Wastewater Biodegradability High Partially biodegradable Low Organic level Chemical process Yes Biodegradability Chemical process Non-biodegradable NO Biodegradable Biological process
72
Coupling Ozone with Biological and Menbrane Treatments
SOSTAQUA ( NOVEDAR ( MBR activated sludge Bioreactor etc.. Ultrafiltration Reverse Osmosis AOPs (ozonation,UV/H2O2) AOPs (ozonation,UV/H2O2)
73
Ozone/UV with Biological treatment
UV Lamp Volcanic stones 27ºC Neutralizing stage O3 killer 1.5L Vessel Thermostatic Bath Air Stirrer
74
UV sequencing photoreactor + bioreactor H2O2 FeSO4 UV lamps
Thermostatic Bath Air 27ºC Volcanic stones Neutralizing stage H2O2 FeSO4 UV UV lamps Magnetic Stirrer 74
75
sequencing photoreactor + bioreactor
Photoreactor 1.5 L Black blue lamps (3 x 8W, 360 nm) = 6 Einstein/s 75
76
SUMMARY Chemical Oxidation Processes
Advantadges - High oxidizing power - Not selective oxidant - No residues (except homogeneous Fenton and O3 catalytic) - Increase biodegradabilty - Decrease toxicty Disadvantages - Cost of UV-Visible radiation and chemicals (H2O2, O3) - Mass Transfer control for ozone - UV light transmission of waters - Rate decreases due to °OH scavenging by the sensitizer (H2O2, O3) products (HCO3-/CO32-, SO42-, HxPO43-x) reactant (Fe2+) Good chance for coupling AOP with biological treatment 76
77
AOPs application fields
Agriculture wastewaters Site waters Abandoned- waters Cooling Domestic Drinking water Well-waters 77
78
Thank you
79
Thank you
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.