Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1.

Similar presentations


Presentation on theme: "1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1."— Presentation transcript:

1

2 1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1

3 1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 Zero Row  1 st Row  2 nd Row  3 rd Row  4 th Row 

4 1 1 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 4th  Binomial Coeff. for a group of 4 4C04C0 4C34C34C24C24C14C1 4C44C4

5 1 1 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 4th  Binomial Coeff. for a group of 4 These are the coefficients in the expansion of (x+y) 4

6 1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 Counting Numbers

7 1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 Triangular Numbers

8 1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 Fibonacci Numbers  sum = 2  sum = 3  sum = 5  sum = 8  sum = 13

9 1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1 Powers of 11 (Only works for n < 5)  11 0  11 1  11 2  11 3  11 4


Download ppt "1 1 1 1 6 15 20 15 6 1 1 5 10 10 5 1 1 4 6 4 1 1 3 3 1 1 2 1."

Similar presentations


Ads by Google