Download presentation
Presentation is loading. Please wait.
Published byAlvin Terry Modified over 8 years ago
1
大葉大學 資訊工程系 黃鈴玲 2011.9
2
G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, Applications, and Algorithms, Pearson, 2007. G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, 1993. 2
3
Ch1 - Introduction to Graph Theory Ch2 - Basic Concepts in Graph Theory Ch3 - Trees and Forests Ch4 - Spanning Trees Ch5 - Fundamental Properties of Graphs and Digraphs Ch6 - Connectivity and Flow Ch7 - Planar Graphs Ch8 - Graph Coloring Ch10 - Independence, Dominance, and Matchings Ch12 - Graph Algorithms 3
5
Problem 1.1: The Bridges of Kőnigsberg 5 Problem: Make a round trip through downtown Kőnigsberg, traversing each bridge exactly once.
6
6 Ans: 因為每次經過一個點,都需要從一條邊進入該點,再用另 一條邊離開,所以經過每個點一次要使用掉一對邊。 每個點上連接的邊數必須是偶數才行 此種走法不存在 (Chapter 5) Q: 是否存在一種走法,可以走過每條邊一次,並回到起點? B1B1 B2B2 I1I1 I2I2
7
Problem 1.2: World Wide Web Communities 7 旅行社網頁 航空公司網站 Complete Bipartite Graph 網頁連結
8
8 Problem 1.3: Job Assignments Jobs: Applicants: qualified Bipartite Graph Problem 1.8: Is the company able to meet its hiring need? If so, provide a possible set of hires that meet their needs. Ans: No (Ch10 Matching)
9
9 Problem 1.4: Storing Volatile Chemicals Problem: C 1, C 2, …, C 7 為有揮發性的化 學藥品,有些不能存放在一起, (An edge between C i and C j indicates a grave danger in storing these chemicals in the same warehouse.) 至少需幾個倉庫? Ans: 4 (Ch8 Graph Coloring) 1 2 3 1 2 3 4
10
Set, element, empty set, subset, union, intersection, disjoint, difference (A\B), cardinality (|A|, 即 A 集合的元素個數 ) symmetric difference of A and B: A B = (A\B) (B\A) power set of S: P(S) = { all subsets of S} k-tuple: (a 1, a 2, …, a k ) Cartesian product of A 1, A 2, …, A k is A 1 A 2 … A k ={ (a 1, a 2, …, a k ) | a i A i for each i } 10
11
A graph or a general graph is an ordered triple G = (V, E, ), where 1. V . 2. V E = . 3. : E P(V) is a map such that | (e)| {1, 2} for each e E. Vertex ( 點 ): element of V (V 也常寫成 V(G)) Edge ( 邊 ): element of E (E 也常寫成 E(G)) : edgemap (e): endvertices ( 兩端點 ) of the edge e (Note: V and E can be infinite.) 11
12
12 G=(V, E, ) V={u 1, u 2, u 3, u 4, u 5 } E={e 1, e 2, e 3, e 4, e 5, e 6 } (e 1 )={u 1, u 2 } (e 2 )= (e 3 )={u 1, u 3 } (e 4 )={u 2, u 3 } (e 5 )={u 3, u 4 } (e 6 )={u 4 } u 5 is called isolated.
13
13 u, v : vertices of a graph G u is called an endvertex ( 端點 ) of e. u and v are adjacent (or neighbors) u and e are incident. (adjacent 用在點與點連接,以及邊與邊連接, incident 用在點與邊連接 ) loop: u v e Multiple edges, parallel edges:
14
Simple graph: a graph having no multiple edges or any loop. can be omitted G=(V, E) 14
15
15
16
16
17
17
18
18
19
19 Exercise 11, 12
20
20
21
21 f u or hbors is the N(u 1 ) = {u 2, u 3 } N[u 1 ] = {u 1, u 2, u 3 } N(u 4 ) = N[u 4 ] = {u 3, u 4 } Exercise 17
22
22 pf. 在計算 degree 總和時,每條邊會被計算兩次, 所以 degree 的總和等於邊數的兩倍。 degree sum = 12 E(G) = 6
23
23 pf. If the number of vertices with odd degree is odd, then the degree sum must be odd. (degree 是奇數的點,一定會有偶數個 ) The null graph N n is 0-regular. The cycle C n is 2-regular. The complete graph K n is (n 1)-regular. The complete (m,n)-bipartite graph K m,n is a regular graph if and only if m=n. Every k-regular graph on n vertices has kn/2 edges. Exercise 13
24
24
25
25 is a subgraph of G if We write G ‘ G.
26
26 If W={w 1, w 2, …, w m }, we write G[w 1, w 2, …, w m ] instead of G[{w 1, w 2, …, w m }].
27
27 Exercise 14, 15, 19
28
28 u v e e' ( 唸成 eta)
29
29 G = (V, E, ) V = {u 1, u 2, u 3, u 4, u 5 } E = {e 1, e 2, e 3, e 4, e 5, e 6 }
30
30 ( 有向圖去掉邊的方向性後,所得之無向圖 )
31
31 Simple digraph: a digraph without directed loops and parallel directed edges.
32
32
33
33 N + (u 3 ) ={u 1, u 4 } N (u 3 ) ={u 1, u 2 } and the
34
34 ( 所有點 indegree 總和 = outdegree 總和 = 邊數 ) A directed cycle is balanced and regular. Exercise: 補充: Draw a nonregular balanced digraph of 5 vertices. 26
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.