Download presentation
Presentation is loading. Please wait.
Published byHenry Dwain Boone Modified over 9 years ago
1
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 6 Random Variables 6.1: Discrete and Continuous Random Variables HW due Friday: p.359 (2, 3, 6, 8, 9, 11, 14, 15, 19, 21, 23, 26, 30) Tutorial next week Tuesday for QM review
2
The Practice of Statistics, 5 th Edition2 Random Variables and Probability Distributions A probability model describes the possible outcomes of a chance process and the likelihood that those outcomes will occur. A random variable takes numerical values that describe the outcomes of some chance process. The probability distribution of a random variable gives its possible values and their probabilities. X = 0: TTT X = 1: HTT THT TTH X = 2: HHT HTH THH X = 3: HHH Value0123 Probability1/83/8 1/8 Consider tossing a fair coin 3 times. Define X = the number of heads obtained
3
The Practice of Statistics, 5 th Edition3 Discrete Random Variables A discrete random variable X takes a fixed set of possible values with gaps between. The probability distribution of a discrete random variable X lists the values x i and their probabilities p i : Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … The probabilities p i must satisfy two requirements: 1. Every probability p i is a number between 0 and 1. 2. The sum of the probabilities is 1. To find the probability of any event, add the probabilities p i of the particular values x i that make up the event. Discrete Random Variables And Their Probability Distributions There are two main types of random variables: discrete and continuous. If we can find a way to list all possible outcomes for a random variable and assign probabilities to each one, we have a discrete random variable.
4
The Practice of Statistics, 5 th Edition4 Mean (Expected Value) of a Discrete Random Variable When analyzing discrete random variables, we follow the same strategy we used with quantitative data – describe the shape, center, and spread, and identify any outliers. The mean of any discrete random variable is an average of the possible outcomes, with each outcome weighted by its probability. Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … To find the mean (expected value) of X, multiply each possible value by its probability, then add all the products: Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … To find the mean (expected value) of X, multiply each possible value by its probability, then add all the products:
5
The Practice of Statistics, 5 th Edition5 Mean (Expected Value) of a Discrete Random Variable A baby’s Apgar score is the sum of the ratings on each of five scales, which gives a whole-number value from 0 to 10. Let X = Apgar score of a randomly selected newborn Compute the mean of the random variable X. Interpret this value in context. We see that 1 in every 1000 babies would have an Apgar score of 0; 6 in every 1000 babies would have an Apgar score of 1; and so on. So the mean (expected value) of X is: The mean Apgar score of a randomly selected newborn is 8.128. This is the average Apgar score of many, many randomly chosen babies.
6
The Practice of Statistics, 5 th Edition6 Standard Deviation of a Discrete Random Variable Since we use the mean as the measure of center for a discrete random variable, we use the standard deviation as our measure of spread. The definition of the variance of a random variable is similar to the definition of the variance for a set of quantitative data. Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … and that µ X is the mean of X. The variance of X is Suppose that X is a discrete random variable whose probability distribution is Value: x 1 x 2 x 3 … Probability: p 1 p 2 p 3 … and that µ X is the mean of X. The variance of X is To get the standard deviation of a random variable, take the square root of the variance.
7
The Practice of Statistics, 5 th Edition7 Standard Deviation of a Discrete Random Variable A baby’s Apgar score is the sum of the ratings on each of five scales, which gives a whole-number value from 0 to 10. Let X = Apgar score of a randomly selected newborn Compute and interpret the standard deviation of the random variable X. The formula for the variance of X is The standard deviation of X is σ X = √(2.066) = 1.437. A randomly selected baby’s Apgar score will typically differ from the mean (8.128) by about 1.4 units.
8
The Practice of Statistics, 5 th Edition8 Analyzing Random Variables On Graphing Calculator Enter the values of the random variable in L1/list 1 and the corresponding probabilities in L2/list 2. 1. TI-83/84: Press Stat and select enter for lists. 2. TI-89: Go to data/matrix editor and create a name for list. To graph the histogram: 1. Set up Stat Plot: TI-83/84: Press 2 nd Stat Plot: change to histogram, xlist: L1, freq: L2 TI-89: Press F2 (Plots): change to histogram, xlist: L1, freq: L2 2. Adjust window: leave some extra space for min and max 3. Press Graph. Press Trace button & scroll left/right to move along histogr Calculate the mean and standard deviation: use one variable statistics with the values in L1 and L2. 1. TI-83/84: Press Stat, arrow over to Calc, select 1-Var Stats type L1, L2, Press Enter. 2. TI-89: Go back to your data in data/matrix editor, Press F4 (Calc), select 1-Var Stats, inputs: c1, freq: c2, Press Enter.
9
The Practice of Statistics, 5 th Edition9 Continuous Random Variables Discrete random variables commonly arise from situations that involve counting something. Situations that involve measuring something often result in a continuous random variable. A continuous random variable X takes on all values in an interval of numbers. The probability distribution of X is described by a density curve. The probability of any event is the area under the density curve and above the values of X that make up the event. The probability model of a discrete random variable X assigns a probability between 0 and 1 to each possible value of X. A continuous random variable Y has infinitely many possible values. All continuous probability models assign probability 0 to every individual outcome. Only intervals of values have positive probability.
10
The Practice of Statistics, 5 th Edition10 Example: Normal probability distributions The heights of young women closely follow the Normal distribution with mean µ = 64 inches and standard deviation σ = 2.7 inches. Now choose one young woman at random. Call her height Y. If we repeat the random choice very many times, the distribution of values of Y is the same Normal distribution that describes the heights of all young women. Problem: What’s the probability that the chosen woman is between 68 and 70 inches tall?
11
The Practice of Statistics, 5 th Edition11 Example: Normal probability distributions Step 1: State the distribution and the values of interest. The height Y of a randomly chosen young woman has the N(64, 2.7) distribution. We want to find P(68 ≤ Y ≤ 70). Step 2: Perform calculations—show your work! Remember: P(68 ≤ Y ≤ 70) = area under the curve. 1.) Find z-score 2.) Use table A and look up area under curve with corresponding z-score. The standardized scores (z-scores) for the two boundary values are (Area under normal distribution curve is from ch 2)
12
Section Summary In this section, we learned how to… The Practice of Statistics, 5 th Edition12 COMPUTE probabilities using the probability distribution of a discrete random variable. CALCULATE and INTERPRET the mean (expected value) of a discrete random variable. CALCULATE and INTERPRET the standard deviation of a discrete random variable. COMPUTE probabilities using the probability distribution of certain continuous random variables. Discrete and Continuous Random Variables
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.