Presentation is loading. Please wait.

Presentation is loading. Please wait.

Smells Unit Investigation IV: Molecules in Action Lesson 1: Breaking Up Is Hard to Do?? Lesson 2: How Does the Nose Know? Lesson 3: Attractive Molecules.

Similar presentations


Presentation on theme: "Smells Unit Investigation IV: Molecules in Action Lesson 1: Breaking Up Is Hard to Do?? Lesson 2: How Does the Nose Know? Lesson 3: Attractive Molecules."— Presentation transcript:

1 Smells Unit Investigation IV: Molecules in Action Lesson 1: Breaking Up Is Hard to Do?? Lesson 2: How Does the Nose Know? Lesson 3: Attractive Molecules Lesson 4: Polar Bears and Penguins Lesson 5: Thinking (Electro)Negatively Lesson 6: I Can Relate Lesson 7: Sniffing It Out... Lesson 8: Take a Deep Breath

2 Smells Unit – Investigation IV Lesson 1: Breaking Up Is Hard to Do??

3 © 2004 Key Curriculum Press. Unit 2 Investigation IV Making Sense Do you think the substances that you smell are staying together as intact molecules or breaking apart into individual atoms? Explain your thinking.

4 © 2004 Key Curriculum Press. Unit 2 Investigation IV Any time a substance goes from one state of matter (solid, liquid or gas) to another state of matter, it is called a phase change. Molecules are stable when they remain together even when undergoing a phase change. Notes

5 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up The idea that molecules remain together as units explains why molecules with the same molecular formula can have different properties such as smell. Molecules undergoing a phase change do not break apart. Molecules are collections of atoms that satisfy the octet rule; as such they are very stable.

6 Smells Unit – Investigation IV Lesson 2: How Does the Nose Know?

7 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst How do you think your nose detects a smell?

8 © 2004 Key Curriculum Press. Unit 2 Investigation IV The Big Question How does our nose detect different smells?

9 © 2004 Key Curriculum Press. Unit 2 Investigation IV A receptor site is a tiny physiological structure made up of large, complex protein molecules that fold to form a specific shape. Molecules with matching shapes fit inside these structures. When molecules attach to receptor sites they stimulate nerves to send a signal to the brain. Notes

10 © 2004 Key Curriculum Press. Unit 2 Investigation IV Check-In One of the molecules that makes coffee smell is 2-furylmethanethiol: Write down everything you know about how this molecule is detected by the nose. Draw a possible receptor site for this molecule.

11 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up The currently accepted model for smell describes smell molecules landing in receptor sites that fit or "receive" the shape of the smell molecules. In the receptor site model each receptor site has a specific shape, which corresponds to the shape of just a few smell molecules.

12 Smells Unit – Investigation IV Lesson 3: Attractive Molecules

13 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst If a molecule fits into a receptor site in the nose, it seems as if it should smell. Yet most of the molecules that make up the air do not have a smell. What do you think is going on? Smells Doesn’t smell? Here are some of the gases in air: O 2 (oxygen), N 2 (nitrogen), CO 2 (carbon dioxide), Ar (argon).

14 © 2004 Key Curriculum Press. Unit 2 Investigation IV You will be able to: Describe a polar molecule.

15 © 2004 Key Curriculum Press. Unit 2 Investigation IV Activity Purpose: In this lesson, you observe the response of certain liquids to a charged wand and the behavior of the same liquids as droplets. These activities give you information about possible interactions between molecules. This is a three-part activity. (cont.)

16 © 2004 Key Curriculum Press. Unit 2 Investigation IV (cont.)

17 © 2004 Key Curriculum Press. Unit 2 Investigation IV Molecule Results of charged wand test Molecule Results of charged wand test waterattractedisopropanol acetic acidhexane (cont.)

18 © 2004 Key Curriculum Press. Unit 2 Investigation IV Some molecules have a slight charge on opposite ends of the molecule. Molecules that have partial charges are called polar molecules. One end of the molecule has a partial negative charge and the other end of the molecule has a partial positive charge. Notes

19 © 2004 Key Curriculum Press. Unit 2 Investigation IV The charged wand shows us that the molecules in certain liquids (polar liquids) orient themselves in response to an electrostatic charge in their vicinity. This causes the liquid to move in the direction of the charge. Notes (cont.)

20 © 2004 Key Curriculum Press. Unit 2 Investigation IV Hexane was not attracted to the charged wand. So it would seem reasonable to suggest that different ends of the molecule do not have opposite partial charges. Molecules such as this are called nonpolar molecules. (cont.) Notes (cont.)

21 © 2004 Key Curriculum Press. Unit 2 Investigation IV The attraction that happens between individual polar molecules is called an intermolecular interaction or an intermolecular attraction. Notes (cont.)

22 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up Polar molecules have partial charges on parts of the molecule. Polar molecules are attracted to a charge. Polar molecules are attracted to each other. These intermolecular interactions account for many observable properties.

23 Smells Unit – Investigation IV Lesson 4: Polar Bears and Penguins

24 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst Consider the following illustration: (cont.)

25 © 2004 Key Curriculum Press. Unit 2 Investigation IV Draw the Lewis dot structure for HCl. If the penguin represents a hydrogen atom and the polar bear represents a chlorine atom, what does the ice cream represent in the drawing? What do you think the picture is trying to illustrate? Would HCl be attracted to the charge wand? Explain your thinking. (cont.)

26 © 2004 Key Curriculum Press. Unit 2 Investigation IV The Big Question How can we explain partial charges on molecules?

27 © 2004 Key Curriculum Press. Unit 2 Investigation IV You will be able to: Recognize and explain a polar bond.

28 © 2004 Key Curriculum Press. Unit 2 Investigation IV Activity Purpose: In this lesson you will be exploring polarity and bonding between atoms in greater detail. A comic book will provide new information about these topics and will introduce you to the concept of electronegativity, which helps us to understand partial charges.

29 © 2004 Key Curriculum Press. Unit 2 Investigation IV Making Sense What does electronegativity have to do with polarity?

30 © 2004 Key Curriculum Press. Unit 2 Investigation IV This tendency of an atom to attract electrons shared between two atoms is called electronegativity. An atom that strongly attracts the shared electrons is considered highly electronegative. The atom with lower electronegativity will end up with a partial positive charge on it. The result is a polar bond. Notes

31 © 2004 Key Curriculum Press. Unit 2 Investigation IV Chemists have a specific name for a molecule that has two poles—it is called a dipole. ("Di" means two.) Notes (cont.) (cont.)

32 © 2004 Key Curriculum Press. Unit 2 Investigation IV This illustration also uses a crossed arrow to show the direction of the dipole in HCl. The crossed end of the arrow indicates the positive (+) end of the polar bond and the arrow points in the direction of the negative (-) end.   Notes (cont.)

33 © 2004 Key Curriculum Press. Unit 2 Investigation IV Polar molecules are also called dipoles. The prefix di- means two. A dipole is a molecule with two partially charged ends, or poles. Chemists refer to polar molecules as dipoles and they also say that molecules with polar bonds have dipoles. This nomenclature can be a bit confusing with two related meanings for two closely-related meanings for the same word. Notes (cont.)

34 © 2004 Key Curriculum Press. Unit 2 Investigation IV Nonpolar covalent bonds are the only bonds in which the electrons are truly shared equally. If the electronegativities between two atoms are even slightly different, they form what is called a polar covalent bond. When the electronegativities between two atoms are greatly different, the bond is called an ionic bond. In the case of an ionic bond the electron of one atom is completely given up to the other atom. Notes (cont.)

35 © 2004 Key Curriculum Press. Unit 2 Investigation IV Notes (cont.)

36 © 2004 Key Curriculum Press. Unit 2 Investigation IV Check-In Is the bond between these atoms polar? Explain your reasoning. How would the atoms be portrayed in the comic book—as polar bears, penguins, or both? Explain.

37 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up Anytime there are two different types of atoms sharing electrons, there will be a partial negative charge on one atom and a partial positive charge on the other atom. Electronegativity measures the tendency of an atom to attract the electrons in a bond. (cont.)

38 © 2004 Key Curriculum Press. Unit 2 Investigation IV The bonds are labeled nonpolar covalent, polar covalent, and ionic as the difference in electronegativity between the two atoms in the bond increases. (cont.)

39 Smells Unit – Investigation IV Lesson 5: Thinking (Electro)Negatively

40 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst Explain how the illustration and the table might relate to each other.

41 © 2004 Key Curriculum Press. Unit 2 Investigation IV The Big Question How does electronegativity relate to polarity and bonding?

42 © 2004 Key Curriculum Press. Unit 2 Investigation IV You will be able to: Determine whether a bond is polar, nonpolar, or ionic.

43 © 2004 Key Curriculum Press. Unit 2 Investigation IV Activity Purpose: This lesson explores electronegativity in a quantitative fashion—that is, it applies numbers to our investigation of polarity. Using the electronegativity scale it is possible to compare atoms and find out which ones will attract electrons more strongly in a bond. (cont.)

44 © 2004 Key Curriculum Press. Unit 2 Investigation IV (cont.)

45 © 2004 Key Curriculum Press. Unit 2 Investigation IV Making Sense Explain how you would determine both the direction and degree of polarity of a bond between two different atoms using the electronegativity scale. (cont.)

46 © 2004 Key Curriculum Press. Unit 2 Investigation IV (cont.)

47 © 2004 Key Curriculum Press. Unit 2 Investigation IV A molecule made from only two atoms is called a diatomic molecule. Notes (cont.)

48 © 2004 Key Curriculum Press. Unit 2 Investigation IV Nonpolar covalent bonds are really the only true covalent bonds. If the electronegativities between two atoms are even slightly different they form what is called a polar covalent bond. In polar covalent bonds the bonding electrons are located closer to the more electronegative atom. Notes (cont.) (cont.)

49 © 2004 Key Curriculum Press. Unit 2 Investigation IV When the electronegativities between two atoms are greatly different the bond is called an ionic bond. In the case of an ionic bond the electron of one atom is completely given up to the other atom. Notes (cont.)

50 © 2004 Key Curriculum Press. Unit 2 Investigation IV Check-In To what degree do the K and Cl atoms in KCl, potassium chloride, share electrons? Is the bond in potassium chloride nonpolar, polar, or ionic? Explain your thinking.

51 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up Electronegativity measures how strongly an atom will attract shared electrons. The greater the difference in electronegativity between two atoms, the more polar the bond will be. In the case of an ionic bond, the electronegativities between two atoms are so greatly different that the electron(s) of one atom is(are) completely given up to the other atom.

52 Smells Unit – Investigation IV Lesson 6: I Can Relate

53 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst HCl (hydrogen chloride) and NH 3 (ammonia) smell and they dissolve easily in water. O 2, N 2, and CH 4 (oxygen, nitrogen, and methane) do not smell and they do not dissolve easily in water. How can you explain these differences?

54 © 2004 Key Curriculum Press. Unit 2 Investigation IV The Big Question How does polarity help to explain what is happening between smell molecules and the nose?

55 © 2004 Key Curriculum Press. Unit 2 Investigation IV You will be able to: Use polarity to predict whether a molecule will have a smell.

56 © 2004 Key Curriculum Press. Unit 2 Investigation IV Water molecules in liquid water orient so that the H atom from one water molecule is pointed toward the O atom of another water molecule. This type of interaction with an H atom between two electronegative atoms on two different molecules is called a hydrogen bond. Notes

57 © 2004 Key Curriculum Press. Unit 2 Investigation IV Activity Purpose: The goal of this lesson is to give you practice in determining the polarity of small molecules with more than two atoms. In addition, you will explore how polarity and electronegativity relate back to smell. (cont.)

58 © 2004 Key Curriculum Press. Unit 2 Investigation IV (cont.)

59 © 2004 Key Curriculum Press. Unit 2 Investigation IV HClNH 3 H2SH2SCF 4 CH 2 OCClF 3 CH 4 O (cont.)

60 © 2004 Key Curriculum Press. Unit 2 Investigation IV MoleculeHas a smell?MoleculeHas a smell? N2N2 NoNH 3 Yes PH 3 YesHBrYes CH 4 NoCO 2 No H 2 SeYesAsH 3 Yes (cont.)

61 © 2004 Key Curriculum Press. Unit 2 Investigation IV Making Sense Explain why polarity might be an important concept to understand when trying to figure out the chemistry of smell.

62 © 2004 Key Curriculum Press. Unit 2 Investigation IV Notes (cont.)

63 © 2004 Key Curriculum Press. Unit 2 Investigation IV Nonpolar molecules (cont.) Notes (cont.)

64 © 2004 Key Curriculum Press. Unit 2 Investigation IV Polar molecules (cont.) Notes (cont.)

65 © 2004 Key Curriculum Press. Unit 2 Investigation IV Polar molecules tend to dissolve more easily in other polar molecules because of the intermolecular forces between the molecules. Nonpolar molecules tend not to dissolve in polar substances. Notes (cont.)

66 © 2004 Key Curriculum Press. Unit 2 Investigation IV Check-In Due to differences in electronegativity, we expect HCN, hydrogen cyanide, to be polar. Since water is polar as well, which way do you think water and hydrogen cyanide molecules would orient with each other? Explain your reasoning. (cont.)

67 © 2004 Key Curriculum Press. Unit 2 Investigation IV Do you think HCN will have a smell? Explain. (cont.)

68 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up Differences in electronegativity values can be used to determine the direction of the dipole for an entire molecule. The polarity or nonpolarity of a molecule is responsible for a great many of its observable properties. Small polar molecules smell. Small nonpolar molecules do not smell.

69 Smells Unit – Investigation IV Lesson 7: Sniffing It Out...

70 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst If you place an open perfume bottle and a piece of paper in a sunny window, the aroma of the perfume will soon fill the air, but you won’t smell the paper at all. Explain what is going on. What is the heat from the sun doing to the perfume to increase its smell?

71 © 2004 Key Curriculum Press. Unit 2 Investigation IV The Big Question How can we apply what we’ve learned about smell to our daily lives?

72 © 2004 Key Curriculum Press. Unit 2 Investigation IV You will be able to: Describe the physical and chemical factors that determine whether on not a type of molecule will smell.

73 © 2004 Key Curriculum Press. Unit 2 Investigation IV Activity Purpose: This lesson wraps up the Smells Unit by introducing data showing that size of molecules, type of bonding, and phase, together with polarity all determine if a substance will have a smell. (cont.)

74 © 2004 Key Curriculum Press. Unit 2 Investigation IV Substance type ExamplesSmell?Phase BondingSizeNameFormula Molecular Nonpolar covalent Small molecules nitrogen oxygen carbon dioxide methane N 2 O 2 CO 2 CH 4 nogas Molecular Polar covalent Small molecules hydrogen chloride hydrogen sulfide ammonia fluoromethane HCl H 2 S NH 3 CH 3 F yesgas Molecular Polar and nonpolar covalent Medium sized molecules octane geraniol carvone amylproprionate C 8 H 18 C 10 H 18 O C 10 H 14 O C 8 H 16 O 2 yesliquid (cont.)

75 © 2004 Key Curriculum Press. Unit 2 Investigation IV Substance type ExamplesSmell?Phase BondingSizeNameFormula Molecular Covalent Large molecules 1-triacontyl palmitate (beeswax) polystyrene (styrofoam) cellulose C 46 H 92 O 2 C 8000 H 8000 C1800H300O15 00 nosolid Ionic Metals bonded to nonmetals sodium chloride (table salt) calcium oxide (lime) calcium carbonate (chalk) NaCl CaO CaCO 3 nosolid Metallic Elemental metals gold copper aluminum Au Cu Al nosolid (cont.)

76 © 2004 Key Curriculum Press. Unit 2 Investigation IV Will Smell Won’t Smell ExampleChemistry Reasoning A brass doorknob Cu, Zn Sweaty socks hexanoic acid, C 6 H 12 O 2 Epsom salts magnesium sulfate, MgSO 4 Anisyl alcohol in laundry soap C 8 H 10 O 2 This is a solid substance made of molecules that are so large they will not go into the gas phase under normal conditions. XSunflower oil C 21 H 38 O 5

77 © 2004 Key Curriculum Press. Unit 2 Investigation IV Making Sense What general statement(s) can you make about whether a substance will have a smell? (For example: Small polar molecules have a smell.)

78 © 2004 Key Curriculum Press. Unit 2 Investigation IV General Ideas about smell: Polarity determines the smell of small molecules. Small polar molecules smell. Small nonpolar molecules do not smell. Polarity does not determine smell in the cases of medium and large molecules. (cont.) Notes

79 © 2004 Key Curriculum Press. Unit 2 Investigation IV Many solids do not evaporate into gases easily, therefore, solids tend not to smell unless they can become volatile (components of a chocolate bar.) Nonmolecular solids (ionic and metallic solids) do not smell. Medium-sized molecules all seem to smell. (cont.) Notes (cont.)

80 © 2004 Key Curriculum Press. Unit 2 Investigation IV Shape and functional group help determine the smell of medium-sized molecules. Large molecules do not smell. They are too big and bulky to become gases and move into the nose. Ionic compounds do not smell – they do not enter the gas phase and travel into the nose like covalently bonded molecules. (cont.) Notes (cont.)

81 © 2004 Key Curriculum Press. Unit 2 Investigation IV According to the table, molecules that are gases at ordinary temperatures are composed of very small molecules or of single atoms (such as argon or neon). This is true. According to the table liquids seem to be composed mostly of medium-sized molecules. This is also a fairly consistent generalization, although some liquids do exist that are composed of large, heavy molecules. (cont.) Notes (cont.)

82 © 2004 Key Curriculum Press. Unit 2 Investigation IV According to the table, solids are composed of large molecules, ionic compounds, or metallic substances. Of course, we know from experience that some solids sublimate; that is, a few molecules go directly from the solid phase to the gas phase, without passing through the liquid phase. (cont.) Notes (cont.)

83 © 2004 Key Curriculum Press. Unit 2 Investigation IV Chemical Name Common Name PhaseMolecular Formula Structural Formula methane natural gas gasCH 4 octanegasolineliquidC 8 H 18 polystyrenestyrofoamsolid(C 8 H 8 ) n Repeating….

84 © 2004 Key Curriculum Press. Unit 2 Investigation IV One of the most important facts you can remember in your study of smell chemistry is that a molecule must be in the gas phase in order to be smelled. Notes (cont.)

85 © 2004 Key Curriculum Press. Unit 2 Investigation IV Check-In Which of the following molecules will smell? Explain your reasoning. MoleculeStructurePhase CaCl 2 calcium chloride Cl – Ca 2+ Cl – (repeating throughout the solid in 3 dimensions) solid vanillinliquid HCN hydrogen cyanide gas

86 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up Small molecules smell if they are polar. Medium-sized molecules tend to smell, whether they are polar or not. The smells of medium-sized molecules can be predicted by looking at shape and functional group. (cont.)

87 © 2004 Key Curriculum Press. Unit 2 Investigation IV Very large molecules do not smell because they do not evaporate and enter the nose. Nonmolecular solids (e.g., salts, metals) do not smell because they do not evaporate. Water is an exception to these generalizations. Humans do not smell water, but conceivably other mammals do. (cont.)

88 Smells Unit – Investigation IV Lesson 8: Take a Deep Breath

89 © 2004 Key Curriculum Press. Unit 2 Investigation IV ChemCatalyst Name three items that might be on an exam covering the entire Smells Unit.

90 © 2004 Key Curriculum Press. Unit 2 Investigation IV The Big Question How well can we predict a molecule's smell, and what factors do we need to consider?

91 © 2004 Key Curriculum Press. Unit 2 Investigation IV You will be able to: Switch between the structural formula, Lewis dot structure, and three- dimensional shape of a molecule, and determine the polarity.

92 © 2004 Key Curriculum Press. Unit 2 Investigation IV Activity Purpose: The goal of this lesson is to integrate your learning about smell chemistry and to review the entire unit. (cont.)

93 © 2004 Key Curriculum Press. Unit 2 Investigation IV a) Structural formulas… b) Properties…. c) Reasoning… (cont.)

94 © 2004 Key Curriculum Press. Unit 2 Investigation IV a) Structural formulas… b) Properties…. c) Reasoning… (cont.)

95 © 2004 Key Curriculum Press. Unit 2 Investigation IV (cont.)

96 © 2004 Key Curriculum Press. Unit 2 Investigation IV Making Sense Has a smell Polar Has a smell Polar Smallish molecule Polar Shape is non-symmetrical Smallish molecule Polar Shape is non-symmetrical (cont.)

97 © 2004 Key Curriculum Press. Unit 2 Investigation IV Has a smell polar Has a smell polar Has a smell polar Non-symmetrical molecule Medium-sized Alcohol Non-symmetrical molecule Medium-sized Ether (Note: The flat drawing looks symmetrical but the geometry around the O atom is bent.) Non-symmetrical molecule Medium-sized Ether (cont.)

98 © 2004 Key Curriculum Press. Unit 2 Investigation IV Other possible structural formulas (cont.)

99 © 2004 Key Curriculum Press. Unit 2 Investigation IV (cont.)

100 © 2004 Key Curriculum Press. Unit 2 Investigation IV Check-In Predict the smell for each of the following molecules and explain your reasoning. decanoic acid dimethyl ether

101 © 2004 Key Curriculum Press. Unit 2 Investigation IV Wrap-Up No Wrap-Up


Download ppt "Smells Unit Investigation IV: Molecules in Action Lesson 1: Breaking Up Is Hard to Do?? Lesson 2: How Does the Nose Know? Lesson 3: Attractive Molecules."

Similar presentations


Ads by Google