Download presentation
1
Mesoporous Solids – Silica Materials
2
S. No Meoporous Silica Material Synthesis Special Features Application Reference 1 MCM-41 Silica source – Sodium meta silicate (Na2SiO3.5H2O) Aluminium Source – Aluminium sulfate {Al2(SO4)3.18H2O} Zinc Source –Zinc Chloride (ZnCl2) Template – Cetyl trimethyl ammonium bromide CTMAB) 1N H2SO4 used to maintain pH =10 Mesoporous MCM-41 containing Zn and Al ions Hexagonal mesoporous symmetry. Zn-Al-MCM-41 (340) SSA m2/g Pore size nm Acidity of catalyst mmol/g Zn-Al-MCM-41(380) SSA m2/g Pore size nm Acidity mmol/g. Al-MCM-41(93) SSA m2/g Pore –size nm Acidity mmol/g Al-MCM-41 (104) SSA m2/g Pore size nm Acidity mmol/g Zn-Al-MCM-41(340) catalyst show high selectivity of p-cymene in the I sopropylation of toluene. Selvaraj et al, Applied Catalysis A: General 242 (2003) 347 2 Template- cetyltrimethyl ammonium bromide Aluminium source- Aluminium sulphate Calcination temp - 550°C Calcinatioin time - 2 hour Aluminium substituted MCM-41 has Lewis and Bronsted acid sites Hexagonal mesoporous structure Al-MCM-41 (100) SSA m2/g SPV cm3/g Pore size nm Al MCM-41 (75) SSA m2/g Pore size nm Al MCM-41 (50) SSA m2/g SPV cm3/g Pore size nm, Al MCM-41 (25) SSA m2/g, Pore size nm The catalytic activity of Al MCM-41. Al MCM-41 (25) has high conversion of n-butyl alcohol of % and Al MCM-41 (100) conversion of TBA of 35.7% in the esterification with acetic acid. Jermy et al., Applied Catalysis A:General 288 (2005) 25
3
3 MCM-41 Silica Source- Tetra ethyl Ortho silicate (TEOS) Template – Cetyl trimethyl ammonium bromide. Amine functionalisation through grafting of 3-amino propyl trimethoxy silane. Acid functionalisation through grafting of nitrile group (-CN) by 3- (ethoxy silyl ) propionitrile and acid hydrolysis with 50% give COOH- MCM-41 and ion exchanged with sodium nitrate to give COONa- MCM-41. Highly ordered hexagonal structure. The BET surface area , pore diameter and Functional group loading are given by SSA m2/g Pore diameter nm NH2-MCM-41 SSA m2/g Pore diameter nm Acid group loading mmol/g COONa-MCM-41 SSA m2/g Pore diameter nm Acid group loading mmol/g NH2-MCM-41 adsorb only Cr2072- below pH value of 3.5. COONa –MCM-41 show 100% selectivity for adsorption of Cu2+ at pH value of 5. Lan et al, Micorporous and Mesoporous Materials 100 (2007) 191 4 Silica source – Sodium silicate ammonium bromide (CTMAB) Copper source – Copper (II) Nitrate . Copper loading by impregnation method Calcination temp °C Calcination time - 6 h Hexagonal symmetry with mesopore structure. SSA m2/g SPV cm3/g Pore diameter 2.19 nm 2 wt% Cu/MCM -41 SSA m2/g SPV cm3/g Pore diameter nm 4 wt% Cu/MCM-41 SSA m2/g SPV cm3/g Pore diameter nm 6 wt% Cu/MCM-41 SSA m2/g SPV cm3/g Pore diameter - 2.1nm 8 wt% Cu/MCM-41 SSA – 643 m2/g SPV cm3/g Pore diameter nm . 10 wt% Cu/MCM-41 SSA m2/g SPV cm3/g Pore diameter nm Cu-MCM-41 showed good catalytic activity for oxidation of Benzene to Phenol 4Cu-MCM-41 show highest catalytic activity of 21% Benzene conversion and 94% selectivity of Phenol . Parida et al. Applied Catalysis A: General 321 (2007) 101
4
5 MCM-41 Silica Source – Tetra ethyl ortho silicate Template – Cetyl trimethyl ammonium Bromide (CTAB) Cerium Source- Cerium sulphate. Lanthanum source - Lanthanum nitrate Calcination temp– 823 K. Ln-MCM-41 was put in deionised water and vibrated in ultrasonic oscillator for 5 min Hexagonal mesopore structure. SSA m2/g SPV nm Pore volume cm3/g Ce-MCM-41 (0.02) SSA m2/g. SPV cm3/g Pore diameter nm Ce-MCM-41 (0.04) SSA m2/g SPV cm3/g Pore diameter nm Ce-MCM-41 (0.06) SSA m2/g SPV cm3/g Pore diameter nm La-MCM-41 (0.02) SSA m2/g SPV cm3/g Pore diameter nm La-MCM-41(0.04) SSA m2/g SPV cm3 /g Pore diameter nm La-MCM-41 (0.06) SSA m2/g SPV cm3/g Pore diameter nm La-MCM-41 show high catalytic activity than Ce-MCM-41 in oxidation of styrene under same condition 6 Silica source – Sodium silicate Template- Cetyl trimethyl ammonium bromide (CTMAB). Molybdenum source- Ammonium hepta molybdate Nickel source –Nickel Nitrate hexahydrate Iron source – Ferric Nitrate Fe(NO3)3 Molybdenum supported MCM-41 doubly promoted by Nickel and Iron SSA m2/g SPV cm3/g Pore diameter nm Fe15NiMo SSA m2/g SPV cm3/g Pore diameter nm Fe25NiMo SSA m2/g Pore diameter - 4.5nm Fe35NiMo SSA m2/g SPV cm3/g Pore diameter nm The catalytic activity of Fe15NiMo/MCM-41 show good activity in individual reaction of Hydro-desulfurisation of dibenzothiophene and Hydrogenation of 2-Methyl naphthalene
5
7 MCM-41 Silica Source – Sodium silicate Template – Cetyl trimethy ammonium bromide (CTMAB) Cobalt source- Cobalt Nitrate(Co(NO3)2.6H2O) Vanadium source – Vanadium Sulphate (VO(SO4)2.5H2O. Calination temperature -823 K Vanadium and Cobalt containing MCM- 41 Hexagonal mesoporous material. The BET Surface area, Pore diameter of the samples with Vanadium and Cobalt metal content can be given by VCo1 –with Cobalt content of 2.23% and Vanadium content of 0.23% has surface area of 950 cm2/g and Pore diameter -2.8nm VCo2 – Cobalt content wt % and Vanadium content -0.61wt % with diameter 2.8 nm VCo3 – Cobalt content 0.76 wt % and Vanadium content 0.78 wt % with surface area 970 cm2/g and Pore diameter 2.7 nm respectively Coblat and Vanadium containing MCM-41 was used in selective oxidation of Styrene to Benzaldehyde and Benzene to Phenol. Tadorova et al, Microporous and Mesoporous Materials 113 (2008) 22 8 MCM-41 and MCM-48 Silica source -Fumed silica. Template – Cetyl trimethyl ammonium Bromide (CTMAB) The synthesis is under basic condition of NaOH pH maintained at 10 by Dil. H2SO4 for MCM-41 H2SO4 is not used for MCM-48 calcinations temp - 540°C for 6h for both material. MCM-41 and MCM-48 were functionalized by 3-amino propyl triethoxy silane(APTES) and Iron tetrasulfopthalocyanine (FePcS) by impregnation method. MCM-41 is hexagonal structure. MCM-48 is cubic mesoporous structure. SSA m2/g SPV cm3/g MCM-48 SSA m2/g SPV cm3/g NH2-MCM41 SSA m2/g SPV cm3/g NH2-MCM-48 SSA m2/g SPV cm3/g FePcS/NH2-MCM-41 SSA m2/g SPV cm3/g FePcS/NH2-MCM-48 SSA m2/g SPV cm3/g showed good catalytic activity in oxidation of styrene due to high adsorption of and Iron tetrasulfopthalocyanine (FePcS). The FePcS/NH2-MCM-48 show higher conversion of styrene of 65.5% and selectivity of benzaldehyde of 21.4 % with Turn Over Frequency (TOF) of 32.7 Pirouzmand et al , Journal of Colloid and interface science 319 (2008) 199
6
9 MCM-41 and SBA-15 For MCM-41 Silica source – Fumed silica, Template- Cetyl trimethyl ammonium bromide (CTMAB).and Trimethyl ammonium hydroxide (TMAOH). Calcination temp – 773 K For SBA-15 Silica source- Tetra ethyl ortho silicate (TEOS) Template - Non ionic triblock co- polymer Pluronic P123 (Ethylene o xide20- propylene oxide70 –Ethylene oxide20 ). HCl to maintain the pH level of 1. Calcination temp k Cobalt source – Cobalt nitrate (Co(NO3)2.6H2O Cobalt impregnated mesoporous material. Co-MCM-41 and Co-SBA-15 both have hexagonal structure. Co-MCM 41 show higher activity than Co-SBA-15 in hydrogenation of toluene Agnes Szegedi et al , Applied Catalysis A: General 338 (2008) 44 10 SBA - 1 Silica source - Tetra ethyl ortho Template – cetyl triethyl ammonium bromide(CTEABr) Impregnation of Fe Iron source – Ferric Nitrate nonahydrate In high acidic medium M HCl. Cage like three dimensional mesopore Fe-SBA-1(36) SSA m2/g SPV cm3/g Pore diameter nm Fe-SBA-1(90) SSA – m2/g SPV – 0.71 cm3/g Pore diameter – 2.4 nm Fe-SBA-1(120) SSA m2/g SPV – 0.70 cm3/g Pore diameter 2.4 nm Acylation of toluene with acetic anhydride - Fe-SBA-1 (36) is an efficient catalyst Conversion of toluene % at 4 h Selectivity for p-methyl acetophenone % p- methyl acetophenone Vinu et al Microporous and Mesoporous materials 100(2007) 87
7
11 SBA-1 Silica source – Tetra ethoxy silane.(TEOS) Template – Cetyl triethyl ammonium bromide (CTEABr) Thiol functionalisation by 3-mercapto propyl trimethoxy silane Template removal- solvent extraction by 5 g HCl in 150 ml of EtOH for 3 hr and process repeated Thiol functionalisation Cage - like mesopores Cubic structure BET specific surface area – 930 m2/g Pore volume cm3/g Pore size nm Mercury ion adsorption Kao et al. Microporous and Mesoporousmaterials 110 (2007) 461 12 SBA- 15 Silica source- Tetra ethyl ortho silicate Template- non ionic triblock co- polymer Pluronic 123 (EO20-PO70- EO20) 2M HCl is used to maintain pH = 1 Tungsten source – Sodium tungstate solution Tungsten substituted on support by direct co-condensation sol-gel method Hydrothermal treatment at 95°C for 3 days Template removal by calcination Calcination temp °C Calcination time - 5 h. 2 D Hexagonal mesopore structure . SBA-15 SSA m2/g SPV - 1,1 cm3/g. Pore diameter nm W-SBA-15 (24) SSA cm2/g SPV - 1.1cm3/g Pore diameter – 7.2 nm W-SBA-15 (30) SSA m2/g SPV cm3/g Pore diameter – 6.6 nm W-SBA-15 (40) SSA m2/g SPV cm3/g Pore diameter nm W-SBA-15 (60) SSA m2/g Pore diameter – 6.2 nm For the metathesis of 1- Butene reaction. Tungsten substituted mesoporous SBA-15 showed good catalytic activity catalyst show high conversion of 1-butene of 92.62 %. and high yield of olefins Chen et al., Materials letter 60 (2006) 3059
8
13 SBA- 15 Silica source – Tetra ethyl ortho silicate (TEOS) Template – non ionic triblock copolymer Pluronic 123 (EO20-PO70- EO20). Sulfonic acid functionalisation by oxidation of 3-Mercapto propyl tri methoxy silane with H2O2 for propyl sulfonic acid functionalisation 2-(4-chloro sulfonyl phenyl) ethyl – trimethoxy silane in dichloromethane used for arene sulfonic acid functionalisation SBA-15 SSA m2/g SPV cm2/g Pore diameter nm SBA-15 Pr-SO3H SSA m2/g SPV cm3/g Pore diameter – 5.5 nm H+ ion capacity mmol/g. SBA-15 Ar-SO3H SSA m2/g, SPV cm3/g Pore diameter – 6.5 nm H+ ion capacity mmol/g SBA-15 – Pr-SO3H –Pr SSA m2/g Pore diameter nm H+ ion capaecity mmol/g. Sulfonic acid functionalized SBA-15 showed higher catalytic activity in the esterification of oleic acid SBA-15-Pr-SO3H show Turn over number (TON) of 1.2 × 10-3 (molecules /s) and for SBA-15-Ar-SO3H it is 2.4 × (molecules /s) M. A. Jackson, Applied catalysis A: General 310 (2006) 48 14 SBA – 15 Silica source - Tetra ethyl ortho Template - Triblock copolymer – Pluronic P123 (Ethylene oxide20 – propylene oxide70 - ethylene oxide20) Template removal- Calcination Calcination temperature – 733 K -SH group is converted to - SO3H by oxidation with H2O2. Sulphonic acid functionalisation, Hexagonal symmetry SBA 15 and SBA-15 –SO3H BET specific surface area – 669 m2/g Pore volume cm3/g Pore size -9.6 nm Wall thickness – 24 Å Interplanar distance SBA Å SBA-15 –SO3H Å Selective synthesis of 4- Phenyl-1,3,dioxane Highly active and selective catalyst for the Prins condensation of styrene with formaldehyde Selectiviy of product ~ 100% Conversion of styrene ~ 1 00% Sreevardhan et al. Catalysis communications 8 (2007) 261
9
15 SBA- 15 Silica source- Tetra ethyl ortho silicate Template- non ionic triblock copolymer Pluronic 123 (EO20-PO70- EO20). Gold source – HAuCl4 1,4,bis (tiethoxy silyl) propane tetrasulfide is to anchor HAuCl4. Template removal by Calcination Calcinatoin temp K Calcination time - 5 h Hexagonal lattice structure. Gold nanoparticles in SBA-15. BET surface Area of 0.5 wt% Gold Mesoporous silica (GMS)-1048 1.0 wt% GMS SSA m2/g 1.5 wt% GMS SSA m2/g 2.0 wt%GMS SSA m2/g 2.5 wt%GMS SSA m2/g 10 wt % GMS SSA m2/g Trichloroethylene cause air pollution 100% removal of Trichloroethylene is achieved by GMS through oxidative decomposition Thus GMS served as the efficient catalyst for the reducing air pollution Magureanu, Applied Catalysis B: Environmental 76 (2007) 275 16 Prepared by NH4F acidic method and pH adjusting method. Silica source – TEOS Template – non ionic triblock EO20) Chromium source – Chromium nitrate nonahydrate solution 0.25M HCl to maintain acidic condition Template removal by calcinations in both method Calcination temp K in both method 2D hexagonal mesopore structure. BET Surface area, Pore diameter and Porevolume given as Cr –SBA-15 , SSA m2/g SPV cm3/g Pore diameter 8.3 nm Cr-SBA-15 (0.04 F) , SSA m2/g, SPV cm3/g Pore diameter – 9.2 nm Cr-SBA-15 (0.05 F) SSA - 968m2/g SPV cm3/g Pore diameter – 8.6 nm Cr-SBA-15 (0.07 F) SSA m2/g Pore diameter- 8.5 nm Cr-SBA-15 (0.04) is the efficient catalyst for oxidation of anthracene to 9,10 anthraquinone used in synthesis of dye. Conversion of anthracene – 90.6 % Product selectivity – 100% at 350 K. Selvaraj, Kawi, Microporous and mesoporous materials 101(2007) 240.
10
Thank You
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.