Presentation is loading. Please wait.

Presentation is loading. Please wait.

LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.

Similar presentations


Presentation on theme: "LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most."— Presentation transcript:

1 LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most cellular work Heat energy

2 LE 9-3 Reactants becomes oxidized becomes reduced Products H Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxideWater HC H H OO O OCO H H CH 4 2 O 2 + + + CO 2 Energy 2 H 2 O

3 LE 9-4 NAD + Nicotinamide (oxidized form) Dehydrogenase 2 e – + 2 H + 2 e – + H + NADH H+H+ H+H+ Nicotinamide (reduced form) + 2[H] (from food) +

4 LE 9-5 2 H + + 2 e – 2 H (from food via NADH) Controlled release of energy for synthesis of ATP 2 H + 2 e – H2OH2O + 1 / 2 O 2 H2H2 + H2OH2O Explosive release of heat and light energy Cellular respiration Uncontrolled reaction Free energy, G Electron transport chain

5 LE 9-6_3 Mitochondrion Glycolysis Pyruvate Glucose Cytosol ATP Substrate-level phosphorylation ATP Substrate-level phosphorylation Citric acid cycle ATP Oxidative phosphorylation Oxidative phosphorylation: electron transport and chemiosmosis Electrons carried via NADH Electrons carried via NADH and FADH 2

6 LE 9-7 Enzyme ADP P Substrate Product Enzyme ATP +

7 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis Citric acid cycle Oxidative phosphorylation ATP

8 LE 9-10 CYTOSOL Pyruvate NAD + MITOCHONDRION Transport protein NADH + H + Coenzyme ACO 2 Acetyl Co A

9 LE 9-11 Pyruvate (from glycolysis, 2 molecules per glucose) ATP Glycolysis Oxidation phosphorylation Citric acid cycle NAD + NADH + H + CO 2 CoA Acetyl CoA CoA Citric acid cycle CO 2 2 3 NAD + + 3 H + NADH3 ATP ADP + P i FADH 2 FAD

10 LE 9-13 ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle NADH 50 FADH 2 40 FMN FeS I FAD FeS II III Q FeS Cyt b 30 20 Cyt c Cyt c 1 Cyt a Cyt a 3 IV 10 0 Multiprotein complexes Free energy (G) relative to O2 (kcal/mol) H2OH2O O2O2 2 H + + 1 / 2

11 LE 9-14 INTERMEMBRANE SPACE H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ATP MITOCHONDRAL MATRIX ADP + P i A rotor within the membrane spins as shown when H + flows past it down the H + gradient. A stator anchored in the membrane holds the knob stationary. A rod (or “stalk”) extending into the knob also spins, activating catalytic sites in the knob. Three catalytic sites in the stationary knob join inorganic phosphate to ADP to make ATP.

12 LE 9-15 Protein complex of electron carriers H+H+ ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle H+H+ Q III I II FAD FADH 2 + H + NADH NAD + (carrying electrons from food) Inner mitochondrial membrane Inner mitochondrial membrane Mitochondrial matrix Intermembrane space H+H+ H+H+ Cyt c IV 2H + + 1 / 2 O 2 H2OH2O ADP + H+H+ ATP synthase Electron transport chain Electron transport and pumping of protons (H + ), Which create an H + gradient across the membrane P i Chemiosmosis ATP synthesis powered by the flow of H + back across the membrane Oxidative phosphorylation

13 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings An Accounting of ATP Production by Cellular Respiration During cellular respiration, most energy flows in this sequence: glucose  NADH  electron transport chain  proton-motive force  ATP About 40% of the energy in a glucose molecule is transferred to ATP during cellular respiration, making about 38 ATP

14 LE 9-16 CYTOSOL Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION Oxidative phosphorylation: electron transport and chemiosmosis 2 FADH 2 2 NADH6 NADH Citric acid cycle 2 Acetyl CoA 2 NADH Glycolysis Glucose 2 Pyruvate + 2 ATP by substrate-level phosphorylation + 2 ATP by substrate-level phosphorylation + about 32 or 34 ATP by oxidation phosphorylation, depending on which shuttle transports electrons form NADH in cytosol About 36 or 38 ATP Maximum per glucose:

15 LE 9-17a CO 2 + 2 H + 2 NADH2 NAD + 2 Acetaldehyde 2 ATP 2 ADP + 2 P i 2 Pyruvate 2 2 Ethanol Alcohol fermentation Glucose Glycolysis

16 LE 9-17b CO 2 + 2 H + 2 NADH2 NAD + 2 ATP 2 ADP + 2 P i 2 Pyruvate 2 2 Lactate Lactic acid fermentation Glucose Glycolysis

17 LE 9-18 Pyruvate Glucose CYTOSOL No O 2 present Fermentation Ethanol or lactate Acetyl CoA MITOCHONDRION O 2 present Cellular respiration Citric acid cycle

18 LE 9-19 Citric acid cycle Oxidative phosphorylation Proteins NH 3 Amino acids Sugars Carbohydrates Glycolysis Glucose Glyceraldehyde-3- P Pyruvate Acetyl CoA Fatty acids Glycerol Fats

19 LE 9-20 Citric acid cycle Oxidative phosphorylation Glycolysis Glucose Pyruvate Acetyl CoA Fructose-6-phosphate Phosphofructokinase Fructose-1,6-bisphosphate – Inhibits ATP Citrate Inhibits Stimulates AMP + –

20 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-3 Leaf cross section Vein Mesophyll Stomata CO 2 O2O2 Mesophyll cell Chloroplast 5 µm Outer membrane Intermembrane space Inner membrane Thylakoid space Thylakoid GranumStroma 1 µm

21 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-5_3 H2OH2O LIGHT REACTIONS Chloroplast Light ATP NADPH O2O2 NADP + CO 2 ADP P + i CALVIN CYCLE [CH 2 O] (sugar)

22 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-6 Visible light Gamma rays X-rays UV Infrared Micro- waves Radio waves 10 –5 nm 10 –3 nm 1 nm 10 3 nm10 6 nm 1 m (10 9 nm) 10 3 m 380 450 500550600 650 700 750 nm Longer wavelength Lower energy Shorter wavelength Higher energy

23 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-8a White light Refracting prism Chlorophyll solution Photoelectric tube Galvanometer The high transmittance (low absorption) reading indicates that chlorophyll absorbs very little green light. Green light Slit moves to pass light of selected wavelength 0 100

24 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-8b White light Refracting prism Chlorophyll solution Photoelectric tube The low transmittance (high absorption) reading indicates that chlorophyll absorbs most blue light. Blue light Slit moves to pass light of selected wavelength 0 100

25 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-9a Chlorophyll a Chlorophyll b Carotenoids Wavelength of light (nm) Absorption spectra Absorption of light by chloroplast pigments 400 500600 700

26 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-9b Action spectrum Rate of photo- synthesis (measured by O 2 release)

27 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-9c Engelmann’s experiment 400 500 600 700 Aerobic bacteria Filament of algae

28 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-11 Excited state Heat Photon (fluorescence) Ground state Chlorophyll molecule Photon Excitation of isolated chlorophyll molecule Fluorescence Energy of electron e–e–

29 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-12 Thylakoid Photon Light-harvesting complexes Photosystem Reaction center STROMA Primary electron acceptor e–e– Transfer of energy Special chlorophyll a molecules Pigment molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) Thylakoid membrane

30 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-13_5 Light P680 e–e– Photosystem II (PS II) Primary acceptor [CH 2 O] (sugar) NADPH ATP ADP CALVIN CYCLE LIGHT REACTIONS NADP + Light H2OH2O CO 2 Energy of electrons O2O2 e–e– e–e– + 2 H + H2OH2O O2O2 1/21/2 Pq Cytochrome complex Electron transport chain Pc ATP P700 e–e– Primary acceptor Photosystem I (PS I) e–e– e–e– Electron Transport chain NADP + reductase Fd NADP + NADPH + H + + 2 H + Light

31 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-14 ATP Photosystem II e–e– e–e– e–e– e–e– Mill makes ATP e–e– e–e– e–e– Photon Photosystem I Photon NADPH

32 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-15 Photosystem I Photosystem II ATP Pc Fd Cytochrome complex Pq Primary acceptor Fd NADP + reductase NADP + NADPH Primary acceptor

33 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-16 MITOCHONDRION STRUCTURE Intermembrane space Membrane Electron transport chain Mitochondrion Chloroplast CHLOROPLAST STRUCTURE Thylakoid space Stroma ATP Matrix ATP synthase Key H+H+ Diffusion ADP +P H+H+ i Higher [H + ] Lower [H + ]

34 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-17 STROMA (Low H + concentration) Light Photosystem II Cytochrome complex 2 H + Light Photosystem I NADP + reductase Fd Pc Pq H2OH2O O2O2 +2 H + 1/21/2 2 H + NADP + + 2H + + H + NADPH To Calvin cycle THYLAKOID SPACE (High H + concentration) STROMA (Low H + concentration) Thylakoid membrane ATP synthase ATP ADP + P H+H+ i [CH 2 O] (sugar) O2O2 NADPH ATP ADP NADP + CO 2 H2OH2O LIGHT REACTIONS CALVIN CYCLE Light

35 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-18_3 [CH 2 O] (sugar) O2O2 NADPH ATP ADP NADP + CO 2 H2OH2O LIGHT REACTIONS CALVIN CYCLE Light Input CO 2 (Entering one at a time) Rubisco 3PP Short-lived intermediate Phase 1: Carbon fixation 6 P 3-Phosphoglycerate 6 ATP 6 ADP CALVIN CYCLE 3 PP Ribulose bisphosphate (RuBP) 3 6 NADP + 6 6 NADPH P i 6P 1,3-Bisphosphoglycerate P 6 P Glyceraldehyde-3-phosphate (G3P) P1 G3P (a sugar) Output Phase 2: Reduction Glucose and other organic compounds 3 3 ADP ATP Phase 3: Regeneration of the CO 2 acceptor (RuBP) P 5 G3P

36 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-19 Photosynthetic cells of C 4 plant leaf Mesophyll cell Bundle- sheath cell Vein (vascular tissue) C 4 leaf anatomy Stoma Bundle- sheath cell Pyruvate (3 C) CO 2 Sugar Vascular tissue CALVIN CYCLE PEP (3 C) ATP ADP Malate (4 C) Oxaloacetate (4 C) The C 4 pathway CO 2 PEP carboxylase Mesophyll cell

37 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-20 Bundle- sheath cell Mesophyll cell Organic acid C4C4 CO 2 CALVIN CYCLE SugarcanePineapple Organic acids release CO 2 to Calvin cycle CO 2 incorporated into four-carbon organic acids (carbon fixation) Organic acid CAM CO 2 CALVIN CYCLE Sugar Spatial separation of stepsTemporal separation of steps Sugar Day Night

38 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero LE 10-21 Light CO 2 H2OH2O Light reactionsCalvin cycle NADP + RuBP G3P ATP Photosystem II Electron transport chain Photosystem I O2O2 Chloroplast NADPH ADP +P i 3-Phosphoglycerate Starch (storage) Amino acids Fatty acids Sucrose (export)


Download ppt "LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most."

Similar presentations


Ads by Google