Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fig. 10-2 (a) Plants (c) Unicellular protist 10 µm 1.5 µm 40 µm (d) Cyanobacteria (e) Purple sulfur bacteria (b) Multicellular alga.

Similar presentations


Presentation on theme: "Fig. 10-2 (a) Plants (c) Unicellular protist 10 µm 1.5 µm 40 µm (d) Cyanobacteria (e) Purple sulfur bacteria (b) Multicellular alga."— Presentation transcript:

1 Fig. 10-2 (a) Plants (c) Unicellular protist 10 µm 1.5 µm 40 µm (d) Cyanobacteria (e) Purple sulfur bacteria (b) Multicellular alga

2 Fig. 10-3a 5 µm Mesophyll cell Stomata CO 2 O2O2 Chloroplast Mesophyll Vein Leaf cross section

3 Fig. 10-3b 1 µm Thylakoid space Chloroplast Granum Intermembrane space Inner membrane Outer membrane Stroma Thylakoid

4 Reactants: Fig. 10-4 6 CO 2 Products: 12 H 2 O 6 O 2 6 H 2 O C 6 H 12 O 6

5 Fig. 10-7 Reflected light Absorbed light Light Chloroplast Transmitted light Granum

6 UV Fig. 10-6 Visible light Infrared Micro- waves Radio waves X-rays Gamma rays 10 3 m 1 m (10 9 nm) 10 6 nm 10 3 nm 1 nm 10 –3 nm 10 –5 nm 380 450 500 550 600 650 700 750 nm Longer wavelength Lower energyHigher energy Shorter wavelength

7 Fig. 10-9 Wavelength of light (nm) (b) Action spectrum (a) Absorption spectra (c) Engelmann’s experiment Aerobic bacteria RESULTS Rate of photosynthesis (measured by O 2 release) Absorption of light by chloroplast pigments Filament of alga Chloro- phyll a Chlorophyll b Carotenoids 500 400 600700 600 500 400

8 Light Fig. 10-5-4 H2OH2O Chloroplast Light Reactions NADP + P ADP i + ATP NADPH O2O2 Calvin Cycle CO 2 [CH 2 O] (sugar)

9 Fig. 10-11 (a) Excitation of isolated chlorophyll molecule Heat Excited state (b) Fluorescence Photon Ground state Photon (fluorescence) Energy of electron e–e– Chlorophyll molecule

10 Fig. 10-12 THYLAKOID SPACE (INTERIOR OF THYLAKOID) STROMA e–e– Pigment molecules Photon Transfer of energy Special pair of chlorophyll a molecules Thylakoid membrane Photosystem Primary electron acceptor Reaction-center complex Light-harvesting complexes

11 Pigment molecules Light P680 e–e– Primary acceptor 2 1 e–e– e–e– 2 H + O2O2 + 3 H2OH2O 1/21/2 4 Pq Pc Cytochrome complex Electron transport chain 5 ATP Photosystem I (PS I) Light Primary acceptor e–e– P700 6 Fig. 10-13-4 Photosystem II (PS II)

12 Pigment molecules Light P680 e–e– Primary acceptor 2 1 e–e– e–e– 2 H + O2O2 + 3 H2OH2O 1/21/2 4 Pq Pc Cytochrome complex Electron transport chain 5 ATP Photosystem I (PS I) Light Primary acceptor e–e– P700 6 Fd Electron transport chain NADP + reductase NADP + + H + NADPH 8 7 e–e– e–e– 6 Fig. 10-13-5 Photosystem II (PS II)

13 Fig. 10-14 Mill makes ATP e–e– NADPH Photon e–e– e–e– e–e– e–e– e–e– ATP Photosystem IIPhotosystem I e–e–

14 Fig. 10-16 Key Mitochondrion Chloroplast CHLOROPLAST STRUCTURE MITOCHONDRION STRUCTURE Intermembrane space Inner membrane Electron transport chain H+H+ Diffusion Matrix Higher [H + ] Lower [H + ] Stroma ATP synthase ADP + P i H+H+ ATP Thylakoid space Thylakoid membrane

15 Fig. 10-17 Light Fd Cytochrome complex ADP + i H+H+ ATP P synthase To Calvin Cycle STROMA (low H + concentration) Thylakoid membrane THYLAKOID SPACE (high H + concentration) STROMA (low H + concentration) Photosystem II Photosystem I 4 H + Pq Pc Light NADP + reductase NADP + + H + NADPH +2 H + H2OH2O O2O2 e–e– e–e– 1/21/2 1 2 3

16 Fig. 10-18-3 Ribulose bisphosphate (RuBP) 3-Phosphoglycerate Short-lived intermediate Phase 1: Carbon fixation (Entering one at a time) Rubisco Input CO 2 P 3 6 3 3 P P P P ATP 6 6 ADP P P 6 1,3-Bisphosphoglycerate 6 P P 6 6 6 NADP + NADPH i Phase 2: Reduction Glyceraldehyde-3-phosphate (G3P) 1 P Output G3P (a sugar) Glucose and other organic compounds Calvin Cycle 3 3 ADP ATP 5 P Phase 3: Regeneration of the CO 2 acceptor (RuBP) G3P

17 Photorespiration: An Evolutionary Relic? In most plants (C 3 plants), initial fixation of CO 2, via rubisco, forms a three-carbon compound In photorespiration, rubisco adds O 2 instead of CO 2 in the Calvin cycle Photorespiration consumes O 2 and organic fuel and releases CO 2 without producing ATP or sugar Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

18 Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the atmosphere had far less O 2 and more CO 2 Photorespiration limits damaging products of light reactions that build up in the absence of the Calvin cycle In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

19 C 4 Plants C 4 plants minimize the cost of photorespiration by incorporating CO 2 into four-carbon compounds in mesophyll cells This step requires the enzyme PEP carboxylase PEP carboxylase has a higher affinity for CO 2 than rubisco does; it can fix CO 2 even when CO 2 concentrations are low These four-carbon compounds are exported to bundle-sheath cells, where they release CO 2 that is then used in the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

20 Fig. 10-19 C 4 leaf anatomy Mesophyll cell Photosynthetic cells of C 4 plant leaf Bundle- sheath cell Vein (vascular tissue) Stoma The C 4 pathway Mesophyll cell CO 2 PEP carboxylase Oxaloacetate (4C) Malate (4C) PEP (3C) ADP ATP Pyruvate (3C) CO 2 Bundle- sheath cell Calvin Cycle Sugar Vascular tissue

21 CAM Plants Some plants, including succulents, use crassulacean acid metabolism (CAM) to fix carbon CAM plants open their stomata at night, incorporating CO 2 into organic acids Stomata close during the day, and CO 2 is released from organic acids and used in the Calvin cycle Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

22 Fig. 10-20 CO 2 Sugarcane Mesophyll cell CO 2 C4C4 Bundle- sheath cell Organic acids release CO 2 to Calvin cycle CO 2 incorporated into four-carbon organic acids (carbon fixation) Pineapple Night Day CAM Sugar Calvin Cycle Calvin Cycle Organic acid (a) Spatial separation of steps (b) Temporal separation of steps CO 2 1 2

23 The Importance of Photosynthesis: A Review The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells Plants store excess sugar as starch in structures such as roots, tubers, seeds, and fruits In addition to food production, photosynthesis produces the O 2 in our atmosphere Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

24 Fig. 10-21 Light Reactions: Photosystem II Electron transport chain Photosystem I Electron transport chain CO 2 NADP + ADP P i + RuBP 3-Phosphoglycerate Calvin Cycle G3P ATP NADPH Starch (storage) Sucrose (export) Chloroplast Light H2OH2O O2O2

25 Fig. 10-UN1 CO 2 NADP + reductase Photosystem II H2OH2O O2O2 ATP Pc Cytochrome complex Primary acceptor Primary acceptor Photosystem I NADP + + H + Fd NADPH Electron transport chain Electron transport chain O2O2 H2OH2O Pq

26 Drought? …. Abscisic acid In preparation for winter, ABA is produced in terminal buds, this slows plant growth.In preparation for winter, ABA is produced in terminal buds, this slows plant growth.terminal budsterminal buds ABA also inhibits the division of cells adjusting to cold conditions in the winter by suspending primary and secondary growth.ABA also inhibits the division of cells adjusting to cold conditions in the winter by suspending primary and secondary growth. ABA then translocates to the leaves, where it rapidly alters the osmotic potential of stomatal guard cells, causing them to shrink and stomata to close.ABA then translocates to the leaves, where it rapidly alters the osmotic potential of stomatal guard cells, causing them to shrink and stomata to close.stomata Reduces transpirationReduces transpirationtranspiration

27 Indian Pipe


Download ppt "Fig. 10-2 (a) Plants (c) Unicellular protist 10 µm 1.5 µm 40 µm (d) Cyanobacteria (e) Purple sulfur bacteria (b) Multicellular alga."

Similar presentations


Ads by Google