Presentation is loading. Please wait.

Presentation is loading. Please wait.

6.5 Neurons & Synapses. Structure of the Human Nervous System Composed of cells called neurons that carry rapid electrical impulses.

Similar presentations


Presentation on theme: "6.5 Neurons & Synapses. Structure of the Human Nervous System Composed of cells called neurons that carry rapid electrical impulses."— Presentation transcript:

1 6.5 Neurons & Synapses

2 Structure of the Human Nervous System Composed of cells called neurons that carry rapid electrical impulses.

3 Motor Neuron Structure & Function Parts of a motor neuron: – Cell body = does most of the typical cell functions, contains the nucleus – Dendrites = branched extensions which connect with other neurons – Axon = thin long fiber which extends from the cell body carrying impulses – Myelin sheath = an insulating membrane – Nodes of Ranvier = gaps in the myelin sheaths where the axon is exposed. – Motor End Plates= nerve endings that connect with a new nerve, muscle, or gland Nodes of Ranvier Nucleus

4 Motor Neuron Structure & Function How is the overall structure of a motor neuron related to its function?

5 Sending a Signal Figure 48.5 Dendrites Cell body Nucleus Axon hillock Axon Signal direction Synapse Myelin sheath Synaptic terminals Presynaptic cell Postsynaptic cell

6 The Nerve Impulse Nerve impulse is the signal that the nerve sends through the axon. http://highered.mcgraw- hill.com/sites/0072495855/student_view0/chapter1 4/animation__the_nerve_impulse.html http://highered.mcgraw- hill.com/sites/0072495855/student_view0/chapter1 4/animation__the_nerve_impulse.html Resting potential: “the state of being where an area of a neuron is ready to send an action potential (but is not currently sending). – During resting potential, the neuron is called polarized.

7 The resting potential depends on the ionic gradients that exist across the plasma membrane. CYTOSOL EXTRACELLULAR FLUID [Na + ] 15 mM [K + ] 150 mM [Cl – ] 10 mM [A – ] 100 mM Permanently Located in Cytoplasm [Na + ] 150 mM [K + ] 5 mM [Cl – ] 120 mM – – – – – + + + + + Plasma membrane Figure 48.10 The concentration of Na + is higher in the extracellular fluid than in the cytosol The opposite is true for K +

8 Sodium-Potassium Pump We are actively pumping Na + out of the cytoplasm, and K + into the cytoplasm through our Sodium-Potassium pump. – This requires ATP. – Sends 3 Na + out, takes 2 K + in. http://highered.mcgraw- hill.com/sites/0072495855/st udent_view0/chapter2/anim ation__how_the_sodium_pot assium_pump_works.html http://highered.mcgraw- hill.com/sites/0072495855/st udent_view0/chapter2/anim ation__how_the_sodium_pot assium_pump_works.html

9 Resting Potential

10 Action Potential: The signal conducted by a “self-propagating wave of ion movement in and out of the neuron membrane” When a stimulus depolarizes the membrane… – Na + channels open, allowing Na + to diffuse into the cell As the action potential goes away… – K + channels open, and K + flows out of the cell

11 This action potential “depolarizes” the cell, making the cytoplasm & extracellular fluid equally charged

12 – + – + + ++ + – + – + + + + + + – + – +++ + + – + – +++ + + – + – – –– – + – + – – –– – –– – – –– – – –– –– + + ++ + + + + – – – – + + + + – –– – – – – – ++ ++ –– – – ++ ++ Na + Action potential K+K+ K+K+ K+K+ Axon An action potential is generated as Na + flows inward across the membrane at one location. 1 2 The depolarization of the action potential spreads to the neighboring region of the membrane, re-initiating the action potential there. To the left of this region, the membrane is repolarizing as K + flows outward. 3 The depolarization-repolarization process is repeated in the next region of the membrane. In this way, local currents of ions across the plasma membrane cause the action potential to be propagated along the length of the axon. K+K+

13 Review http://highered.mcgraw- hill.com/sites/0072495855/student_view0/ chapter14/animation__the_nerve_impulse. html http://highered.mcgraw- hill.com/sites/0072495855/student_view0/ chapter14/animation__the_nerve_impulse. html

14 Synaptic Transmission Once the impulse reaches the axon terminal, there must be a chemical communication between the neurons. Synaptic Cleft = area between axon terminal and postsynaptic neuron or cell Neurotransmitter = any chemical used for synaptic transmission – Ex. Acetylcholine – Neurotransmitters are held in vesicles

15 Steps: 1. Calcium ions diffuse into the axon terminal. 2. Vesicles with neurotransmitter fuse with cell membrane, releasing its contents into the synaptic cleft. 3. Neurotransmitters diffuse across synaptic cleft to the post- synaptic neuron or muscle/gland cell. 4. Neurotransmitters bind with a receptor protein.

16 Steps 5. When the neurotransmitter binds with the receptor, it opens an ion channel and Na+ diffuses into the cell…. 6. depolarizing it, and instigating an action potential. 7. Neurotransmitter is broken down and released from receptor. 8. Na+ ion channels close. 9. Neurotransmitters are taken up again by vesicles into axon terminal.

17 Synaptic Transmission http://www.youtube.com/watch?v=hqWv0iEF 4ho http://www.youtube.com/watch?v=hqWv0iEF 4ho http://highered.mcgraw- hill.com/sites/0072495855/student_view0/ch apter14/animation__transmission_across_a_s ynapse.html http://highered.mcgraw- hill.com/sites/0072495855/student_view0/ch apter14/animation__transmission_across_a_s ynapse.html


Download ppt "6.5 Neurons & Synapses. Structure of the Human Nervous System Composed of cells called neurons that carry rapid electrical impulses."

Similar presentations


Ads by Google